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ABSTRACT

In this paper, the cubic spline on spline technique is used in conjunction with the finite difference method for
the solution of a partial differential equation. Two different approaches of the proposed technique, for the
solution of the one dimensional diffusion partial differential equation, are presented. The stability analysis of
both resulting schemes are given. Numerical results for a test problem are also obtained.

1. INTRODUCTION

Consider the one dimensional diffusion parabolic partial
differential equation

auzazu

3t 32 D= x<il (D

subject to the initial condition

u (x,0) = g (x) for0 < x <1 2)

and the boundary conditions
u@©O,)=f; t), u(l,t) =£f, (t) fort > 0 3)

where g (x), f; (t) and f, (t) are known functions which
satisfy the standard requirements for the existence and
uniqueness of the solution to the above problem.

The above model has several applications in many
engineering problems. Sastry [1] has solved it by using a
cubic spline S to approximate the function values u, the

space derivative 22_‘; was approximated by S” and the
ax

time derivative %u? by a finite difference approximation.

The first approach adopted in this paper to solve the
given problem uses a forward difference approximation
for the time derivative. Then the resulting second order
ordinary differential equation is rewritten as a system of
first order differential equations, and a cubic spline on
spline [2] is used to reach the numerical solution of the
original problem. This will be referred to as Method (1).

The second approach implemented in the present paper
namely the spline on spline technique on u, uses as Sastry
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[1] a cubic spline S to approximate the function values u,

and another cubic spline S to approximate the first
derivative of S. In this technique, the space derivative

.a_z_'z‘. is approximated by S and the time derivative by
dax
a finite difference approximation. This will be referred to

as Method (2).

2- METHOD (1)
In this approach the time derivative aT:‘ at the arbitrary

time level t; = jk; where k denotes the time step and
j = L,2,...; is replaced by its corresponding forward

difference approximation -Il'c' (Y41 - uj). Subsequently the
second order differential equation that results is written as

dzul(x)

dxz * F(UI,X) (4)

where u; is now a function of x only and F represents the
finite difference expression that results from the above
procedure.

Equation (4) can be rewritten as a system of two first
order differential equations as follows

ey 5.3)
dx

d

_du: =F(u;,x) (5.b)
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This system of equations (5) can be formally written as

dup
_=Fp(u1,u2,x)

where p=1,2 (6)
dx

Subdividing the computational domain x € [0,1] into n
equal subintervals of size h, we construct a set of
computational nodes x; = ih (i = 0,1,... n). Integrating
equation (6) from x; ; to x; and denoting the resulting
quantity by ¢ ; (u) we have

X X

du
p.i(w)= j L dx- J Fp(u;,u,,%)dx =0

Xi-1 Xi-1

from which it follows that

li
¢, (W=v,;-u,; ;- [F,(u,5,0dx=0 p=1,2 (7)
-1

There are various numerical schemes to evaluate the
above integral, among them is the following scheme that
requires the numerical derivatives of F [3] leading to:

h h? :
¢, W=u, ;- - E(Fp.l +B )+ anp.i il

hd .- i 7
—m(F p,i-F p'l-])+0(h )=0 (8)

The subscript p will be dropped from now on.
To determine the derivatives F' and F” from F we use
a cubic spline S on F to obtain F’', then we use another

cubic spline S on S’ to evaluate F'’.
Let S denotes a cubic spline interpolant so that

Sx) =F for i=0,1,2,...n
It is known that if
So=Fp and 8, = F’, then S is unique [4].

S’; may be directly computed from F; using the well
known formula [4].

’ ’ ' 3
S'i41 + 48+ 8, = § Fiv1-Fp) O
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At end points, approximations to first and second
derivatives can be used in a manner similar to that
implemented in [5], [6]

F ’(,=_l%[-251=0+481=1 -36F, +16F;-3F,]+0 (")

Fg=$[2Fo -5F, +4F, -F3]+0(?)

Corresponding formula for F'_ is skew symmetric to
that of F'y, and formula for Fnzuis symmetric to that of
Foz. The superscripts on S and F above denote the order
of their derivatives.

Let S denotes a cubic interpolating spline on the §',

values computed in (9). The first derivatives of S at x;
are computed from a formula similar to that mentioned
above, hence:

=g = = 3 . .
S ;.1+48 ; +8 i-l=i'(s I (10)

with
So=Fgand § *,=F>
2.1 Error bounds

In this section we derive some error bounds related to
the quantities involved in this method.

Error bounds for |F’;-S, | and | Fiz-gi'l are to be
determined. Let e; denotes the difference given by

e; = F’; - §';. Using the maximum norm definition we

have

IIF(x)ﬂ =max |F(x) |

lel = max |g
0<i<n

We now prove some theoretical results related to these
error bounds.

Theorem 1:

If S is a cubic interpolating spline on F such that

’ P, S
$ 141 t48 #3 =2y =Fip)
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with
So=Fp and S, =F,°
and S¢=Fg and S>-F?
then ||e|l =O(h4)
Proof

By subtracting F';,; + 4 F'; + F';_ | from both sides
of equation (11), we get

’ ’ ! 3
Cirrtd eite =Fiy +4F+F - (Fiy Fiy)
Using Taylor’s expansion this equation reduces to

g e e 1t Y
¥ (=5 F ()

ey T4+, =
where
X S 0, 6%, i=1,2,..n-1
For any function W and V defined at the knots such that
Wi +4W, + W, =V,

By the maximum principle argument for difference
equation, it follows that

IW < |Wol+W,y|+1 max |v
20<i<a

Let W=e and since by assumption ¢y = e, = 0 therefore

1 M 1 1os
< _ ax — | =F ) -—F 4
lel 5 el | = OB z ¢)]

lel sgh1F°] (12

Error bounds on the cubic spline on spline used to
interpolate the derivatives of S’ are derived in the
following theorem.
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Theorem 2
Let S denotes a cubic interpolating spline on S';

computed in (11), the first derivatives § : computed at x;
from

J it S ;
S i1 +4S ;+S i-1=g6 a8 iy 13

with
S 4=F3 and §, =F?
Then
2 —=.
|F; -8 ;| =0®%
Proof:

Subtracting Fi2 +1“‘4Fi2*Fi-1 from both sides of
equation (13) and let F2 - S *; =E; then

P . 2 -2
Ejy 1 +4E + B e SN i) +F}, | +4F] +F,_,
The R.H.S of the above equation can be rewritten as .

'%(s'm -s'l-l)’Flz'l“Plz’Pl,-l--%[(s'lol “Fla)-E-F L)

3 ” ’
[ RO B aEh

Expanding the terms in the second bracket in Taylor
series about the point x; up to order h* and using the
result given by equation (12) in theorem 1 above, it is
found that

i+l

- 5 1
[ %(S e i-l)"'F'z *'4Fi2+Fi2-l I < -5-h3|FS|

Applying the maximum principle for difference equation,
we get

2_ g 1 3pgs
B850 < Lud 1)
Replacing F'; and F;? in equation (8) by S’ andS A
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respectively we obtain
a0 w2 B8 ) B )00 (14)
In order to solve the system of equations (14), let
¢; (W) = V; (u) + W; (u) (15)

where

V==t~ = % F; +F,) (16)

1

w-bls s h 545" 17)
i* 16 S - i—l)'l—z’( i*S o) (

Using the modified Newton’s non-linear iterative
technique, then
uktD=y®. ;1 (v) ¢ @) k=0,1,2,... (18)
where J (V) is the Jacobian of the values of V given by
equation (16). The convergence of the modified Newton
technique is proved in [7]. It is evident that J (V) has a
sparse structure and has only few elements per row.
Various sparse matrix techniques can be used for the

solution of equation (18), for details of such techniques
we refer to the work given in [8].

2.2 Stability of the numerical scheme in Method (1)

Since all computations involved are done using a finite
number of decimal places, then round off errors are
unavoidably introduced.

Following Von Neuman argument the difference
between the exact numerical solutions and those that are
computed, can be expressed as a linear combination of
exponential function in time multiplied by harmonic ones
in space. Let us denote these differences by

Eup s Esp: and E;p- for the function w,, the cubic spline Sp'

and the spline gp'. p=1,2. Due to the linearity of the
problem in hand, we can consider one term of such
combination, hence we have

iiBh o jk

E.=aie
llpp

_ 1i8h _ajk
Eﬁp,—bp e €
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L 1i8h _ajk
Esp,-cp e e

p=1.2
where ay, bp, Cpr @ and (3 are arbitrary constants and

i=y/-1.

These expressions are known to satisfy similar equations
as (9), (10) and (14) respectively. Hence it follows that
equation (9) leads to

by (2 + cos fh) = %azfsinﬁh (19)
and
b, eak(2+cos/3h)=h_3ka|§sinah €k-1) ()
Equation (10) gives

¢y (2 + cos gh) = % b,isith (21)

and
¢y (2 + cos h) = % bzf sin Sh (22)

Using equation (14) we can arrive at
Zalf sin Sh - hay (1 + cos Bh)
h?, - h3
+ ?blisinﬁh—zdc,(hoosﬂh) =0 (23)

and

2a2e"4:innh—%al(e"‘—l)(lwemph)q-h?zbze"isinbh
h?  ak
-go.c-ze (1+cosfBh)=0 (24
The Von Neuman stability condition requires that
le* k| <1
The above system of equations (19-24) leads to

ak_ Q(o)
¢ TQO) @ ®)
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where r=.-li , 6=ph,
h2

Q(6) = 121Cos*6 + 1617Cos®6 + 8342 Cos*8 + 20582 Cos* 8 +23937 Coa6 + 10201
and
T(6)= - 16000088 - 11200Cos*8 - 25600Cos*8 - 12800Cos? 8 + 25600ccsf +25600]

By plotting the values of | ¢ | as 6 varies from O to
2% and using different values for r (r = }5), it was
h .

found that all the orbits remain within the unit circle for
all choices of h and k. Hence it follows that the scheme
is unconditionally stable.

3- METHOD (2)

In this alternative method we use a different approach
namely cubic spline on spline on u.

Let S denotes a cubic spline approximation on u, and S
a cubic spline approximation on S’ (which is the first
derivative of S w.r.t.x). Then a suitable approximation of
equation (1) is given by

1 s -,
E[“i,jd'“i,j]:(l'#)s ijs1*#S j; (26)

where y is a weighing parameter, if 4 = 1 the method
is explicit, if g = 0 it is fully implicit; in general
O<u<l.

The cubic spline on u and that on S’ satisfy

.

' . 3
S s T45,+ 8 '= T Wi -vp) @D

-, =, = 3 . 2

It is clear that the above system leads to a triadiagonal
one. Upon solving this system, together with the
supplementary conditions

So=Ff,® and§' =f, (1)
resulting from
ad a3 e’
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and the requirements
S (x0, ) = f; () and S (x,,0) = £ (1)

the values of S ~ at each point of time can be obtained.

3.1 Stability analysis of Method (2)

Following the Von Neuman argument and in a similar
manner as that discussed earlier we arrive at:

S =D =cl(1-p) +ue™¥] 29
b Jae

2 +coth)=T| sinfSh (30)

c(2+cos6h)=%§ sinBh @31

which are obtained using equations (26), (27), (28)
riipectively. This leads to the following expression for
e

9rsin fh

e*k=p-
(¥ +00th)2 +9ru sin?Bh

(32)

For stability we must impose the condition

| e | <1
which leads to
2
1-2p) < Z
r(1-2 ) 3

Therefore the numerical scheme based on the cubic spline
on spline on u is conditionally stable. However, the
proposed scheme mentioned above is less restrictive than
that obtained by Sastry [1], where the stability condition

for his scheme leads to r (1-2 p) < %.

4- NUMERICAL RESULTS
This paper does not intend to solve a difficult problem,

but rather to present the numerical methods discussed
above and to illustrate their computational performance.
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Equation (1) was solved with the initial condition

u=sintx (0 < x < 1)att =0, and the boundary

conditions u = 0 at x = Oand x = 1 (t = 0),h was
1 |

chosen = — andr=
v20

The results were in very good agreement with the exact

) . s " P
solution which is u = sin 7x e " ¥ ",

These results are shown in the following table.

X Method 1 | Method 2 | Exact solution
0.25 10.7001961] 0.7001613 0.7001622
0.5 10.9902269| 0.9901791 0.9901789
0.75 10.7001961| 0.7001630 0.7001619
CONCLUSION

Two different approaches for the application of cubic
spline on spline technique are presented. Both methods
give a good approximation of the one dimensional
parabolic diffusion equation. The first method, as shown,
is unconditionally stable. In the second method, although
the stability analysis leads to a restrictive condition on the
choice of h (the space step) and k (the time step), it is
noticed that it is less restrictive than that when a cubic
spline is used on the value of u directly.
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