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By proper choice of a simple two-constants fitting function, it is now possible to get better accuracies than
those achieved from complex fitting functions having three or more constants. The recommended new
technique is highly dependent on comparing the asymmetry of the original function or data to be fitted with
those of different simple fitting functions. The one that has the nearest asymmetry gives the best fit. The
proposed technique has been successfully tested in predicting the variation of some properties frequently used
in chemical engineering against an independent variable. The technique has also proved to be useful in the

reverse prediction if needed and is less time consuming.

INTRODUCTION

In various branches of science and technology and
particularly in chemical engineering, there are properties
which vary with different parameters like temperature or
composition. When these properties are plotted versus the
independent variable, a simple curve is obtained which
has no maximum or minimum or a point of inflection in
the region of interest. However, a simple analytic relation
cannot be deduced theoretically for these simple curves.
Examples of such properties are numerous. The variation
of relative volatility, bubble point and dew point with
composition for binary ideal mixtures are well known
examples. Other examples include the variation of the
humidity ratio of saturated air with temperature and the
variation of the viscosity of water with temperature.

This work presents a systematic technique for finding
the best functions which fit these simple curves. The last
two examples were chosen specifically to compare with
another rapid curve fitting technique [1].

* Author to whom correspondence should be addressed.
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THE PREVIOUS TECHNIQUE

In this technique, the author utilized the following
fitting function to represent the variation of a property (F)
with temperature (T):

F = Fi +.a (T-Ti) +b (T-Ti)" (1)
Here: F = the property of interest which may be
humidity ratio (H), or viscosity (u) at
temperature (T);
F, = the value of the property at initial
temperature (T;);
a,b,n = constants.

The author utilized tables of the humidity ratio and
viscosity at equal temperature intervals. Such tables could
be based on experimental data or on values calculated
from complex or difficult implicit relations. From a plot
of F versus T, the author obtained the slope (dF/dT) at T,
and equated it to a. Knowing F at the final temperature T
and the average temperature Ty, = (T; + Tp/2, he
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deduced the values of b and n. Finally by trial and error,
he adjusted the values of the constants to give the best
possible fit. Of course, a better approach, but probably
more time consuming is to get the values of a, b, and n
from three simultaneous equations based on the values of
F at T and two other temperatures at equal intervals (or
nearly so) in the temperature range T, and Tj.

Table (1) gives the values of H at different values of T
between 70°F and 140 °F [2]. From this table, one
finds:

H at 70°F = 0.01582
H at 140°F = 0.1534
H at T, (105°F) = 0.05070
slope at 70°F = 5.575E-4

Following the procedure outlined by Totman [1] and
substituting in Eq. (1) we get:

H=0.01582+5.575E-4(T-70)+1.1142E-6(T-70)2:%8!  (2)

The equation obtained from solving three simultaneous
equations based on the values of H at 94, 118 and 140°F
is given by:

H = 0.01582 + 6.421E-4(T-70) + 4.1735E-7(T-70§-¥77 (3)

The equation given by Totman after adjusting the
constants of Eq. (2) by trial and error is the following:

H = 0.01582 + 6.3114E-4(T-70) + 4.7625E-7(T-70)2-868% (4)

Egs. (3) and (4) are quite close to one another which
shows that the adjustment of Eq. (2) was nothing but an
effort to reach Eq. (3) without the trouble of solving three
simultaneous equation in three unknowns.

Table 1. Saturated Humidity versus Temperature [2]

Temp. Sat. Temp. Sat. Temp. Sat.
(°F) | Humidity (°F) Humidity (°F) | Humidity
70 0.01582 94 0.03556 118 0.07652
/] 0.01697 9% 0.03795 120 0.08149
74 0.01819 98 0.04049 122 0.08678
76 0.01948 100 0.04319 124 0.09242
) 0.02086 102 0.04606 126 0.09841
80 0.02233 104 0.04911 128 0.10480
82 0.02389 106 0.05234 130 0.11160
84 0.02555 108 0.05578 132 0.11890
86 0.02731 110 0.05944 134 0.12670
88 0.02919 112 - 0.06333 136 0.13500
9% 0.03118 114 0.06746 138 0.143%0
92 0.03330 116 0.07185 140 0.15340
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The maximum errors obtained from utilizing Egs. (2),
(3), and (4) in the range 70°F to 140°F are 2.9%,
1.9%, and 2.0 %respectively.

In the same paper, Totman used Eq. (1) to fit the
relation between the viscosity of water in the region 0°C
to 30°C and temperature. He got the following relation:

u = 1.7921 - 0.06267 T + 0.0035 T!-627 (5

with a maximum error equal to 0.9%.

It may be pointed out also that both Egs. (4) and (5) can
be utilized to calculate H or u at a given value of T and
not vice versa unless trial and error is used. No explicit
relation for T in terms of H or u can be derived.

With the present technique, it will be shown that,
following a systematic approach, a two constant equation
is obtained which is simpler and more accurate than the
three constant equations (4) and (5) at the same time leads
to a simpler explicit relation for T in terms of H or u.

THE PRESENT TECHNIQUE

In the present technique, the fitting equation is a two-
constant chosen from five fitting functions depending on
which one of them has the nearest asymmetry to that of
the original function or data to be fitted.

In the dimensionless forms, the five functions are the

following:
Inverse linear function (I.L.F.):

Y = [aX] / [1+(a-DX] ()
Exponential function (E.F.):
Y=["-11/[g-1] M
Logarithmic function (L.F.):
Y = In [X (b-1) + 1]/ In [b] ®)
Poisson function (P.F.):
¥ = X kI )
Quadratic function (Q.F):
Y = cX + (10X? (10)

Here: Y = dimensionless dependent variable;
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X = dimensionless independent variable;
a8, g, b,c,and k = constants.
For all the above functions
Y=0atX=0
Y=1aX=1
For a function Y = f (X):
Y = [y-yil / [yryil an

and
X = [x-x;] / [x¢X] (12)

The asymmetry of any of the above functions is given
by mo, ml.

Here:
mg = slope at (X=0) = [dY/dX], o (13)

m; = slope at (X=1) = [dY/dX], ., (19)
and therefore

mo m; = m; m¢ [(x¢- X)) / (yry)? = my mg 62(15)
Here:

# = the scale factor

m; = initial slope = [dY/dx];; (16)

m¢ = final slope = [dY/dx],q; an

The asymmetry of each function depends on the value
of the corresponding constant a, g, b, k, or ¢ which can
be calculated from one value only of Y at any value of X
between X; and X;.

For easy estimation and also for better accuracy, X is
taken equal to X,,. = [(X;+Xp/2] in which case X
=[1/2] and we call the corresponding value Y, or Z
and hence

One can show that

Alexandria Engineering Journal, Vol. 32, No. 3, July 1993

a = [Z/(1-2)] (18)
g = [1-2yZ) (19)
K=42° (20)
c =4Z -1 (21)

No analytical expression can be derived for the
logarithmic function. However, there is an analytic one
in terms of Z which is the value of X at Y = 1/2. The
logarithmic function can be accomplished through the
exponential function and therefore will not be discussed
in this paper.

The asymmetries of the other fitting functions were
derived in terms of Z by differentiating Egs. (6), (7), and
(10) and substituting from Eqs. (18-21). They are given
by the following relations:

ILLF. mym =1 (22)
EF. m,m, ={[2Z(1-2)/(1-22)] In (1-Z)/Z]}*> (23)
P.F. m, m; = 4Z? [1-2 In 2Z] (24)
Q.F. m, m; = [4Z-1) (34Z)] (25)
Values of m;, m; as given by Egs. (22-25) were
calculated for different values of Z between 0.2 and 0.8
and the results are given in Table (2) and plotted in
Figure (1) together with m; m, for logarithmic function
which was calculated by trial and error.

If the original function is given in the form of difficult
formula, m, m; and Z are obtained by differentiation and
substitution respectively. '

In the case of two simultaneous equations namely

Y =1, (vand v = f, (X), then
m = [dy/dx] = [dy/dv] [dv/dx] (26)

and in case of an implicit function, one utilizes the
following relation:

[dy/dx] = [1/dx/dy)] (v2))
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Figure 1. The asymmetries values for different values of
Z.

If the original function is given in the form of a table
where Y is given at equal intervals of X as in Table (1),
the slopes are calculated from formulas given in the next
section. In Table (1), the value of Y at X, .. (H at T, )
is missing and has to be calculated by interpolation using
a convenient through accurate interpolation formula. This
will be shown also in the following sections.

1. Calculation of Slopes from Tabulated Values

With reference to Figure (2), slope m, at point O can be
expressed in terms of

ml, m2, m3,... etc
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or m-1, m-2, m-3,... etc

Hence: m; = [y,/h]; m, [y,/2h]: m3 = [y3/3h ... etc.

and m-1  =[y-1/h]|;m-2= |[y_,/2h]|;m-3
= |[y.3/3h]|]...etc
yh
Y2
Y1
h h h h L
y-1 0 X
y-2

Figure 2. Illustrative curve.

when point o is an initial point,. then fitting a quadratic
polynomial gives

m, = 2m; - my (28)
By fitting a polynomial of the 4th degree, we get:
m, = 3m; - 3my + my (29)
and by fitting by a polynomial of the 4th degree, we get:
m, = 4m, - 6m, + 4m; - m, (30)
etc.
When point O is a final point, the corresponding m,
values are the following:
m, = 2m-1 - m-2 (31)
m, = 3m-1 - 3m-2 + m-3 32

m, = 4m-1 - 6m-2 + 4m-3 - m-4 33)
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etc.
Usually Egs. (28) and (31) are accurate enough. For
better accuracy, Egs. (29) and (32) are utilized and very
seldom higher order equations are needed in this work.

If the point O is not an end point, then m, is more
accurately determined from equations obtained from
fitting polynomials to points after and points before the
origin.

Fitting a quadratic polynomial to one point after and
one point before the origin gives

m, = m;-1 (34)

0
Here: m;-1 = [(y,-y.1)/2h] 35)

Fitting a polynomial of the 4th degree to two points after
and two points before the origin leads to

m, = [(4m,-1 - my-2)/3] (36)

Here: my-2 = [(y,-y-2)/4h] 37
and hence

m, = [8(y;-y.1) - (¥2-y2)V/12h (38)

2. Interpolation in Tables

If the original function is given in the form of a table at
equal intervals of the independent variable then the value
of Y corresponding to any value of X between X and
X, can be obtained using any of the fitting Eqs. (6-10).
When h is small enough as in the case of Table (1), Z
will not differ much from 0.5 in which case, all fitting
functions have asymmetries close to 1 and are practically
identical as can be seen from Table (2) and Figure (1).

The fitting function should, however, be in a form
suitable for interpolation. For example, in the case of the
inverse linear function, on combining Eqs. (6) and (18)
and then substituting for Y, X, and Z in terms of Y, 4,
4,, and f one gets

Y=Y, +{[A[(A; +A)f)/[24-(A-ADfI}  (39)
with reference to Figure (3),
A =Y,41-Y, (40)

4 = Yu42- Youi (41)
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Z = [A/(A; +4))] 42)

Y = [(y-¥n)/ Gn+2Yo)] = [(y-¥)/(4) +49)] (43)

X = [(x-Xy)/(Xg42-Xp)] = [(x-X)/2h] =1/2)] (44)
Here:

f = [(x-xp)/h]. (45)

Table 2. The asymmetries values (m, m,) for different
values of Z.

R S NS
p mo ml Zz mo ml

EB. PE. Q.F. EF. P.F. QF.

0.20 | 0.5466 | 0.4532 | -0.4400 | 0.51 | 0.9995 | 0.9992 | 0.9984
0.21 | 0.5745 | 0.4825 | -0.3456 | 0.52 | 0.9979 | 0.9968 | 0.9936
0.22 | 0.6017 | 05115 | -0.2544 | 0.53 | 0.9952 | 0.9927 | 0.9856
0.23 | 0.6282 | 0.5402 | -0.1664 | 0.54 | 0.9915 | 0.9869 | 0.9744
0.24 | 0.6539 | 0.5686 | -0.0816 | 0.55 | 0.9867 | 0.9794 | 0.9600
0.25 | 0.6789 | 0.5966 | 0.0000 | 0.56 | 0.9808 | 0.9701 | 0.9424
0.26 | 0.7031 | 0.6240 | 0.0784 | 0.57 | 0.9739 | 0.9590 | 0.9216
0.27 | 0.7265 | 0.6510 | 0.1536 | 058 | 0.9660 | 0.9462
0.28 | 0.7490 | 0.6773 | 0.2256 | 0.59 | 0.9570 | 0.9315
0.29] 0.7707 | 0.7029 | 0.2944 | 0.60 | 0.9470 | 0.9149
0.30 | 0.7915 | 0.7278 | 0.3600 | 0.61 | 0.9359 | 0.8965
0.31 | 0.8114 | 0.7519 | 0.4224 | 0.62 | 0.9238 | 0.8761
0.32 | 0.8303 | 0.7752 | 0.4816 | 0.63 | 0.9107 | 0.8538
0.33 | 0.8483 | 0.7976 | 0.5376 | 0.64 | 0.8966 | 0.8295
0.34 | 0.8654 | 0.8191 | 05904 | 0.65 | 0.8815 | 0.8032
0.35 | 0.8815 | 0.8395 | 0.6400 | 0.66 | 0.8654 | 0.7749
0.36 | 0.8966 | 0.8590 | 0.6864 | 0.67 | 0.8483 | 0.7446
0.37] 0.9107 | 0.8774 | 0.7296 | 0.68 | 0.8303 | 0.7122
0.7696 | 0.69 | 0.8114 | 0.6777 | 0.4224
0.8064 | 0.70 | 0.7915 | 0.6410
0.8400 | 0.71 | 0.7707 | 0.6023
0.8704 | 0.72 | 0.7490 | 05614
0.8976 | 0.73 | 0.7265 | 05183
0.9216 | 0.74 | 0.7031 | 0.4729
0.9424 | 0.75 | 0.6789 | 0.4254
0.9600 | 0.76 | 0.6539 | 0.3756 | -0.0818
0.9744 | 0.77 | 0.6282 | 0.3236 | -0.1664
0.9856 | 0.78 | 0.6017 | 0.2692 | -0.2544
048] 0.9979 | 0.9968 | 0.9936 | 0.79 | 0.5745 | 0.2126 | -0.3456
0.49 0.9995 | 0.9992 | 0.9984 | 0.80 | 0.5467 | 0.1536 | -0.4400
0.50 10.10000| 1.0000 LI_EXX)

0.39 | 0.9359 | 0.9107
0.40 | 0.9470 | 0.9256
0.4110.9570 | 0.9393
0.42 | 0.9660 | 0.9516
0.43 ] 0.9739 | 0.9627
0.44 1 0.9808 | 0.9724
0.45 | 0.9867 | 0.9807
0.46 | 0.9915 | 0.9875
0.47 0.9952 | 0.9929

E.F. = Exponential function;
P.F. = Poisson function;

Q.F. = Quadratic function.

Similar interpolation formulas can be deduced from the
exponential, Poisson, and quadratic functions.

]
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Yn+2

Yn+1

Yn

Figure 3. Illustrative curve.

Inverse interpolation is easily achieved by solving for f
in Eq. (39) and then substituting from Eq. (45) leading
to:

X=x,+[(2hA)(Y-YPVI(Y-Y)(Ap-A)+A (A +4,)]  (46)
Inverse interpolation formulas can be obtained for the
exponential and quadratic fitting functions but not for the

poisson function where no analytical expression can be
deduced.

APPLICATIONS

To illustrate the application of the present method and
compare with results achieved by a previous technique
[1], the best fitting Z-constant function will be deduced
for the humidity ratio of saturated air versus temperature
and for viscosity of water between 0°C and 30°C.

1. The Humidity Ratio of Saturated Air Versus
Temperature Between 70°F and 140°F.

From Table (1).
m; = [(0.01697 - 0.01582)/2]
m, = [(0.01819 - 0.01582)/4]

m3 = [(0.01948 - 0.01582)/6]
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Substituting in Eq. (29) gives
m; = 3m, - 3my + m; = 5.575E4
similarly
m-1 = [(0.1534 - 0.1439)/2]
m-2 = [(0.1534 - 0.1350)/4]
m-3 = [(0.1534 - 0.1267)/6]
Substituting in Eq. (32) gives
mg = 3m-1 - 3m-2 + m-3 = 4.90E-3
m,m; = m;m@* = [5.575E-4] [4.90E-3] [(140-70)
/(.1534-.01582))>
m, m; = 0.707

= [(70+140)/2] = 105 °F

Tave

Interpolation between T=104 °F and T=106 °F in
Table (1) using Eq. (39) one finds

Y, = hjgq = 0.04911
4A; = 0.05234 - 0.04911 = 0.00323
4, = 0.05578 - 0.05234 = 0.00344
f = [(x - xz)/h] = [(105 - 104)/2] = 0.5
Substituting these values in Eq. (39) gives
H,os = 0.05070

All other interpolating formulas resulting from the
exponential, Poisson or quadratic fitting functions lead to
the same value for H g
Z=Y ;= [(0.0507-0.01582)/(0.1534-0.01582)] =0.2535
Substituting in Egs. (22-25) one finds
I.L.F.: m,m, =1
E.F.; m, m; = 0.6875
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PE,: m, m; = 0.6062
QF.: m, m; = 0.0278

Comparing with the actual m, m, value which is equal to
0.707, one finds that the exponential function gives the
best fit since 0.6875 is the nearest value to 0.707.

Formulas for different fitting functions in terms of Z are
easily deduced by substituting for the constants a,g,k, and
¢ from Eqs. (18-21). Substituting Z = 0.2535, one gets
equations for all fitting functions, namely

LL.F.
H=0.01582+[6.675E-4(T-70)]/[1-9.43E-3(T-70)] (47)
E.F.

H = 0.01582 + {0.01794 [(2.9443) [(t-70)/35] -1]}(48)
P:F.

H=0.01582+ {5.0531E-4(T-70)(1.9722)[(T-70)/35}(49)

Q.F.
H=0.01582+[2.76E-5(T-70)] +[2.77E-5(T-70)?]  (50)

The value of H was calculated using all five fitting
functions including Totman's {Eq. (4)] at different values
of T. The percentage error was calculated for all five
functions and is tabulated in Table (3).

Table (3) shows that different functions lead to varying
errors. The Totman equation leads to a maximum error
equal to 2.0% while the maximum error is less than 0.5%
in the case of the exponential fitting function and is equal
to 1.7% for the poisson function, 4% for the inverse
linear and 16% in the case of the quadratic fitting
function.

The exponential function [Eq. (48)] is therefore the best
two-constant fitting function and leads to an error which
is only one quarter the error of Totman’s three-constant
fitting function. Furthermore, an explicit relation for T in
terms of H can be deduced easily from the exponential
fitting function.
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Table 3. The percentage Error of all functions.

==r=\

i
Temp | Exact Totman EF. PF.|LLF. | QF
' H E% H E% | E% | E% | E%

(‘| H

70 |0.01582 ) 0.01582 | 0.00 | 0.01582| 0.00 | 0.0 | 00 | 0.0
75 |0.01882 | 0.01902| 1.08 | 0.01881 | -0.04 | -1.2 | 2.7 | -115
80 |0.02233 | 0.02248 | 0.67 | 0.02230 | -0.12| -1.7 | 39 | -155
85 |0.02642 | 0.02641 | -0.03 | 0.02638 | -0.16 | -1.7 | 4.0 | -15.0
90 |0.03118 | 0.03101 | -0.58 | 0.03113 | -0.16 | -15 | 35 | -136
95 |0.03674 | 0.03647 | -0.73 | 0.03668 | -0.16 | -1.1 | 23 | 80
100 |0.04319 | 0.04297 |-0.51 | 0.04315|0.09| 06 | 13 | -38
105 |0.05070 | 0.05070 | 0.00 | 0.05070| 0.00 | 00 | 00 | 00
110 | 0.05944 | 0.05983 | 0.66 | 0.05951| 0.12 | 05 | -12 | 23
115 | 0.06962 | 0.07052 | 1.29 | 0.06979| 0.25 | 09 | -23 | 5.0
120 |0.08149 | 0.08296| 1.80 | 0.08179]| 036 | 1.2 | -3.1 | 60
125 |0.09537 | 0.09729 | 2.20 | 0.09578| 043 | 13 | -34 | 6.0
130 |0.11160 | 0.11370| 1.89 | 0.11210| 046 | 1.2 | -3.1 | 5.0

135 |0.13080 | 0.13240 1.19 | 0.13120) 028 | 0.7 | -3.1 | 5.0
140 | 0.15340 [ 0.15340 0.00 | 0.15340| 000 | 00 | 00 | 00

H = Saturated Humidity;
E% = Error percentage.

2. Viscosity of Water V. Temperature between 0°C and
30°C

Applying the present technique to data obtained from
Handbook of chemistry and Physics [3], one gets
(du/dT); = - 0.0607 cp/°C

(duw/dT); = 0.0170 cp/°C

6 = [30/0.9895] = 30.32
m, m; = (-0.0607) (-0.0170) (30.32¢ = 0.949
Z = [(1.139-0.7975)/ (1.787-0.7975)] = 0.345

The corresponding asymmetries were calculated from Eq.
(22-25) leading to

LL.F. m,m; =1

E.F m, m; 0.873
P.F, m, m; = 0.83
Q.F. m, m; = 0.62

The functions having the nearest asymmetry to that of
the original function is the inverse linear function.
Substituting
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Z =0.345
Y = [(u - 0.7975) / (1.787-0.7975)]
and
X [(T-0) / (30-0)]

in Eqgs. (16) and (18), one gets the following simple
relation for u as a function of temperature.

p = 1.787 - [0.0627T/(1+0.03) T)] (51)
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Eq. (51) leads to a maximum error equal to 0.13% or -
0.26% which is approximately one quarter the maximum
error of 0.9% or-0.6% resulting from using Totmn's
three-constant equation. Again, as can be seen from Eq.
(51), an explicit relation in T can be easily achieved.
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