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ABSTRACT

Let G be a group and R =
ge G

@ R, be a G-graded ring, i.e., R; Ry SRy forallg, h e

G. Many studies

in group graded rings assume R to be a strongly graded ring, i.e., Rg Ry = Ry forallg, h ¢ G. But this strong
condition is hard to statisfy. In this paper we look for other weaker and useful conditions. We define three
successively stronger properties that a grading may have. Then we investiagte the relationship between these new
strong gradings and the stronger nodegenerate and faithful properties which are motivated by the work of Choen

and Rowen.
INTROCUTION

Throughout this paper R is a ring with unity 1, graded by

a group G, i.e.,, R = @G R, for additive subgroups Ry,
ge

satisfying R; R, & Ry, for all g, he G. Obviously, R, is a
subring of R and 1e R, where e is the identity of G.
Methods of graded rings have proven to be successful tools
in the structure theory for commutative and non commutative
rings. For a ring R and a group G one can write R as a
G-Graded ring with R, = R and R, = 0 otherwise (trivial
graduation of R by G). But this uation does not help us
to study R or its graded modules. So, it is very important to
give new conditions on the graduation of R. Many studies in
group graded rings assume R to be a strongly graded ring,
ie., R for all g, he G. These rings have been
studxecf by E. C ade in [3], where they were called clifford
systems. However, this strong condition is hard to satisfy.
So, one should look for other weaker and useful condition.
In this paper we define three sucessively stronger
properties that a grading may have. Then we investigate the
the relationship between these new strong gradings and the
stronger nondegenerate and faithful properties which are
motivated by the work of Cohen and Rowen in [2].

1. NONDEGENERATE AND FAITHFUL GRADED
RINGS

Let R be an associative ring with unity 1 and G be a group
with identity e. We say that R is a G-graded ring if there
exist additive subgroups Ry of R indexed by the elements
ge G such that R= @ RganngRhQRghforallg,he G.

We consider (R, G) to be the G-graded ring R and supp
(R,G) = {ge G: Ry = 0}. The elements of R, are called

* This research was supported in part by Yarmouk University

homogeneous of dimension g. For xe R, we write x, for the
compoent of x in Ry, so that x can be written uniquely as
T x,

g

ge G

Definition 1.1
Let R be a G-graded ring. The map

(,): RxR — R, defined by (x,y) =
inner product map on R.

(xy), is called the

Proposition 1.2

Let R be a G-graded ring and ( , ) be the inner product
map on R.

(1) If(,)is R,-bilinear then R, is commutative subring of
R.

(2) If each element of R, commutes with each element of
R then ( , ) is R,-bilinear.

Proof: (1) suppose ( , ) is R -bilinear. Letr, s € R,, then

(r,r+s) = (f(r+s), = (D), + (1), = * + rs. By

assumption (r,r+s) = (r,r) + s (r,1) = r2+sr. Therefore,

rs = sr and hence R, is commutative.

(2) Letx,y,ze Randr e R,. Clearly, (x+ry,z) = (x,2)
+ r (¥,2). On the other hand, (x,y+rz) = (x(y+r12)),
= (xy), + (xrz),. But xr= rx implies (x,y+rz) =
(xy), + r (x2), = (x,y) + r (x,2z). Hence (, ) is R-
bilnear.

However, if R, is commutative then this doesn’t mean

(', ) is R,-bilinear as we see in the following example.
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Example 1.3

Let G = Z, and R = M, (Z,). Then R is a G-graded

0 0 Z,
andR; = . Clearly , Ry is

o [3
ring with: Ry= 0 2, Z, 0

) 00 11
commutative. Let r = 01 € Ry,x=z= 1 lamd

_ 1 1heac )oo] sy ()’10]
y—ll‘ X,y +1Z 01- x,y) +r(x,z o1

So, (/, ) is not R,-bilinear.
Definition 1.4

Let R be a G-graded ring and ( , ) be the inner product
map on R. Then (R,G) is said to be left (resp. right)
nondegenerate if (r,R) = O (resp. (R,r) = 0) implies r = 0.
If (R,G) is both left and right nondegenerate then we say
(R,G) s nondegenerate.

Theorem 1.5 ([1]).

Let R be a G-graed ring. Then (R,G) is nondegenerate iff
for any a, € Rg-0, ay Rg—l # 0 and Rx'l ag # 0.

Definition 1.6

Let R be a G-graded ring and ( , ) be the inner product
map on R. Then (R,G) is said to be left (resp. right) faithful
if forany a; e R; -0, a, Ry # O (resp. Ry a, # 0) for all
h ¢ G. If (R,G) is both left and right faithful then we say
(R,G) is faithful.

Definition 1.7

For a G-graded ring R we way (R,G) is semiprime if R
has non-zero nilpotent graded ideal. Also, (R,G) is said to
be prime if the product of any two non-zero graded ideals of
R is non-zero.

Theorem 1.8 ([2]).

Suppose R, is semiprime. Then (R,G) is left nondegenerate
iff (R,G) is right nondegenerate.

Proposition 1.9

Suppose R, is prime. Then (R,G) is left faithful iff (R,G)
is right faithful.

D 92

Proof: Suppose R, is prime and (R,G) is left faithful. Let
ag € Rg-Orand he G. Then Rb-x Ry, ag Rx-x are two non-
zero right ideals of R.. So, R, -1 Ry a, Rg-x # 0 and
hence Ry, a, # 0, i.e., (R,G) is right faithful. The other part
is similar.

In the following proposition we give necessary and
sufficient conditions for a G-graded ring R to be faithful.

Proposition 1.10

Let R be a G-graded ring. Then (R,G) is faithful iff for
any non-zero graded ideal Iof R, I, # O forall g ¢ G.
Proof: Suppose (R,G) is faithful. I be a right graded
ideal of R such that I, = O for some h ¢ G (a similar
argument works for left ideals).

Let ge G. Then (I() Ryg)Ry-1< (IR;-1) ) Ry R, 1) <
I Ry=I;, = 0. So, by faithfulness of R, I ) B = I, =0
and hence Ig=0 forall g € G, i.e.,I=0.

Conversely, leta, ¢ Rg-0. ThenI = R a, is a non-zero
left graed ideal of R and hence L, # O for all he G. But
lhg=Ra N Ryg = Ry ag. So, Ry a; # O for all he G,
ie., (R,é) is right faithful. Similarly we show (R,G) is left
faithful by choosing I = a, R.

2. VARIOUS STRONGLY G-GRADED RINGS

The stronger nondegenerate and faithful properties are
motivated by the work of Cohen and Rowen in [2]. We now
define three successively stronger properties that a grading
may have. The first is due to Dade [4] and Fell [5].

Definition 2.1

For a G-graded ring R we say:

(1). (R,G) is strong if Ry Ry = Ry, for all g, he G. But
this definition is equivalent to 1 ¢ R, Rg-x for all
g € G (see proposition 1.6 of [4]).

(2) (R,G)is first strong if 1 € Ry Rx-x for all g ¢ supp
(R,G).

(3) (R,G) is second strong if R¥ R, = Rﬂh for all g,he
supp (R,G) and supp (R,G) 1s a monoid in G.

Clearly, (1) = (2)= (3). To see that the three definitions
are distinct, we consider some examples.
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Example 2.2

(A first strong grading which is not strong). Let
G = Z,andR=M, (Z,). Then R is first strong with:

S

and R; = R; = 0. But clearly R cannot be written as a
strongly G-graded ring.

Example 2.3

(A second strong grading which is not fist strong). Let K
be a field and R = K [x] with the usual graduation byZ.
Then supp (R,Z)=NU{0} is a monoid inZ, and R;R; =R, ;
for all 1, j € supp (R, Z), i.e., (R, Z) is second strong.
Since 2 € supp (R, Z)and Ry R, = 0 # Ry, (R, Z) is
not first strong.

Lemma 2.4 ([12]).
If (R,G) is first strong then supp (R,G) < G.
Facts 2.5

(1) If (R,G) is second strong and supp (R,G) < G then by
definition (R,G) is first strong.
(2) IF G is a finite group and (R,G) is second strong then
for each g € supp (R,G), g'! = g® for some n ¢ N.
So, g! € supp (R,G) and hence supp (R,G) = G.
Therefore, (R,G) is first strong.
(3) IF G is a finite group and (R,G) is first strong then this
doesnot mean that (R,G) is strong (see Example 2.2).
Now, we study the relationship between (nondegenerate,
faithful) gradings and these new strong gradings.
One can easily see that: (R,G) strong =(R,G) faithful
= (R,G) nondegenerate. See [1] for the distinction of these
dejuncions,
The relationship between nondegenerate and first strong is
given in the following proposition.

Proposition 2.6

Let R be a G-graded ring. Then (R,G) is first strong iff
(R,G) 1s nondegenerate and second strong.
Proof: Suppose (R,G) is first strong. By Lemma 2.4, supp
(R,G) <G, and then supp (R,G) is a monoid in G. Let g,he
supp (R,G). Then Ry, =R, Ry =R, Rg-l Rgh S Ry Ry,. So,
Rg Rh=Rgb for all g,he supp (R,G), i.e., (R,G) is second

strong. To show (R,G) is nondegenerate, leta; ¢ R, - 0. If
ay Rg-x = Othenag Rz-l R‘ = Oandhmeag =0, a
contradiction. Therefore, (R,G) is left nondegenerate.
Similarly, (R,G) is right nondegenerate.

Suppose (R,G) is second strong and nondegenerate. Let
g€ supp(R,G).ThmR' # Oxmdhen«eellx Rg-x # 0.
So, g! € supp (R,G) and R, R -1 =R, forallg ¢ supp
(R,G), i.e., R, is first strong.

Now, if (R,G) is first strong then (R,G) is nondegenerate.
However, the converse is not true as we see in the following
example.

Example 2.7

(A nondegenerate grading which is not first strong). Let
G = Z; and R = K [x], where K is a field. Then R is a
G-graded ring with:
Ry, <1, x3, x6, 2Ry = <X, x‘, x7, ...> and
R, = <x%, x°, x8, ... >. Clearly (R,G) is nondegenerate.
But 1,2 ¢ supp (R,G) and R R, # R, implies (R,G) is not
second strong and hence (R,G) is not first strong.

Example 2.8.

(A first strong grading which is not faithful). Let K be a
field, R = M, (K) and G = Z,. Then R is G-graded

: 4 K 0 0 K
ring with: Ry = o KandR2= K 0 R,=R; =0.

Clearly, (R,G) is first strong but not faithful.
Example 2.9.
( A faithful grading which is not first strong). Let K be a

field, R = K[x]and G = Z;=. Then R is a G-graded ring
with:

n
Ro=1Y @;x%:ne N|J{0},;¢ K,
i=0

n
R,= E aixs"l:ne NU {0},a;e K[,
i=0
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n
R,= Eaixs"z:ne NU{O},aie Kf,
i=0

Clearly, (R,G) is faithful and supp (R,G) = G. Since R,
R, # Ry, (R,G) is not second strong and then (R,G) is not
first strong.

Now, if (R,G) is nondegenerate then (R,G) need not be
second strong (Example 2.7). Also, if (R,G) is faithful then
(R,G) need not be second strong (Example 2.9).

In Example 2.3, (R,G) is second strong. So by proposition
2.6, (R,G) is an example of second strong which is not
nondegenerate and hence not faithful.

So, we have the following diagram:

faithful €——>——5 nondegenerate

In the following proposition we give the relationship
between faithful and strong radings.

Proposition 2.10

Let R be a G-graded ring. Then (R,G) is strong iff (R,G)
is second strong and faithful.
Proof: Clearly, if(R,G) is strong then (R,G) is second strong
and faithful. Conversely, if (R,G) is second strong and
faithful then supp (R,G) G. So, Rs R, = Rgh for all
ghe G, i.e., (R,G) is strong.

Definition 2.11

Let R be a ring with two graduations (R,G) and (R,H).
Then (R,G) is almost equivalent to (R,H) if there exists a
function f: R — R satisfying the following two conditions:
(1) f is a ring isomorphism from R to R, and
(i) foreach he H, there exists ge G such that f(Rg)=Rh.

In [13] we proved that the nondegenerate property is
preserved between almost equivalent graduations, but the
faithfulness and strong properties are not. Now, we show
that the first and second strong properties are preserved
between almost equivalent graduations.

Proposition 2.12

Suppose (R,G) is almost equivalent to (R,H). Then (R,G)

D 9%

is first strong iff (R,H) is first strong.

Proof: Assume (R,G) is almost equivalent to (R,H) by f
Suppose (R,G) is first strong and h ¢ supp (R,H). Tha
there exists g € s:pp(R,G)smht!ntf(&) =Ry SinoeRxRx-1
#0, Ry 1 = f(Rg-l). So, Ry Ry -1 = f(R‘ Rg-l)

= f (Reg) = ReH. Conversely, suppose (R,H) is first
strong and g € supp (R,G). Then f (R,) = Ry for some
he supp (R,H). Hence f(R‘ Rg-x) =Ry Rg-l
=ReH=f(ReG) . But f is 1-1 implies R, R‘-x = Reo.

Proposition 2.13

Suppose (R,G) is almost equivalent to (R,H). Then (R,G)
is second strong iff (R,H) is second strong.
Proof: Assume (R,G) is almost equivalent to (R,H) by f.
Suppose (R,G) is second strong and h;, h, € supp (R,H).
Then there exists g;, g, € supp (R,G) such that f(Rgi)
= R, fori = 1,2. Since supp (R,G) is a monoid we have
g1 &2 € supp (R,G) and hence Ry, Ry, = f(Ry Rg)
= f(Rg,gz) # 0. So, h; hy ¢ supp (R,H), i.e., supp (R,H)
is a monoid in H. Now, 0 = f (Rlxiz) c Rh,h2 implies
Rh1h2= f (Rglzz) = Rhnha' Thus (R,H) is second strong.
Conversely, assume (R,H) is second strong and g, g)¢
supp (R,G). 'I'hf;',nf((Rgi)=R,li fori = 1,2 and some h;, hye

supp (R,H). So, 0 R‘hxhz‘Rhanz = f(R&R;z) implies
R8182 # 0 and hence supp (R,G) is a monoid in G. Since

fs H m(R3182)=R"1h2 Sf(RhRSz) ve lne R8182 =R81R!2
for all g, g; € supp (R,G).
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