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1. INTRODUCTION

In the dynamical operation of interconnected power
systems, it is usually important to aim for decentralization of
control action to inglividual areas. This aim should coincide
with the requirements for keeping the system frequency and
inier-area tie-line power as near to the scheduled values as
mssible through the control action. The advantages of this
operating technique are apparent in providing cost savings in
{ils communication and in reducing the scope of the
moniforing network.

Recently, the problem of decentralized load-frequency
twntrol (LFC) for multi-area interconnected power systems
has received considerable attention [1-7]. These methods use
either suboptimal control strategies or decentralized pole
plcement technique. Though most of the suboptimal
decentralized LFC design techniques meet the requirements
of load-frequency scheduling, they do not guarantee closed-
loop stability for a general case. On the other hand the
decentralized pole placement technique will ensure closed-
loop stability if the design is successful.

In this paper, an optimal decentralized controller with
prescribed  dominant eigenvalues is introduced. The
ggenvalues selected to shift into the desired region are
determined using the dominant mode energy analysis [9,11].
Since the poles to be shifted can be determined and the
effect of the transfer function zeros has been considered in
lhe dominant mode energy analysis, very good control
performance can be obtained [10]. The weighting matrix can
be sequentially tuned to ensure global optimality of the
inlerconnected system.

The rest of the paper is divided into four sections. In
fion 2, the general dynamical model of the decentralized
C problem, taking into consideration the speed governor
klash nonlinearity, is first stated. The design procedure
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A simple and computationally efficient optimal decentralized control design is introduced for load-frequency control
ininterconnected power systems. The design procedure of the 'decoupled’ system is based on Solheim’s sequentially
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is applied to the two-area Egyptian power network. The results demonstrate the usefulness of the proposed design

of the optimal decentralized controllers is given in section 3.
Then, in section 4, the proposed design control mode is
applied to the two area Egyptian power system. Finally,
some conclusions are given in section 5.

2. STATEMENT OF PROBLEM

The multi-area model used here and developed previously
by Bahnasawi et al. [S] is summarized in Appendix. In this
model the speed governor backlash nonlinearity has been
considered and the linearized system is obtained by using the
generalized describing function approach [8].

Following [5], the decentralized optimization problem of
N-linear dynamical multi-area interconnected power system
can be written in the compact form :

il 2
3 2
M"‘Jflﬁl(HXiHQ;“ ﬂ“i"Ri )dt (1)
t=1" «
subject to
. N
jelgwi
y; = CX; (3)

where X,€R™ is the state vector of the ith control area,
u,€R™ is the control vector, d,€R" is the disturbance

vector,y; ER" is the output vector, and A,B,I,C, are
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constant matrices of 'appropriate dimensions. The

determinatiop of the optimal control law u;” which
minimizes the quadratic performance index J, requires that
R; to be positive definite and Q; to be at least positive
semidefinite.

Area state-vector i1s X;=[Ap;.; , Af

AP
1 ’
, | ACE; at]T

AX

g’ vi

: b,
where AX, a AX_,-— AP, + ——Af,
i gvi ci i

T TR,

Global state vector isX=[Ap,;.,At],AP

AX,,, | ACE, dt,
Afy,APy,AX,,, | ACE,dt]T

gl

where Ap;. = APge.; = -APye2

Global control vector is u = [Ap. , Apcz]T

Global disturbance vector is d = [APy; , APy,]T

Il

Global output vector is y = [Af, A61T

Now, the objective is to design N decentralized controllers,
one for each area which will meet the following

requirements:
(a) The closed-loop system should have good dynamic
response.
(b) The steady-state Area Control Error (ACE) should be
Zero.

(¢c)  The design of linear optimal controllers with
bounded control signals to only local areas.

3. OPTIMAL DECENTRALIZED CONTROL DESIGN
3.1 Decentralized LFC scheme:

The actuating signal u; is formed in accordance with the
feedback control law

Si .
J:

where KiERm‘“‘ and 1, is mx1 reference input. With a
given R, matrix, the feedback gain Ki(') and the weighting

matrix Qf’) #=1,2,...,s;, are found by assigning s; dominant
‘eigenvalues using an optimal sequential pole placemfznt
technique [9]. The poles to be shifted are determined using
the dominant energy mode analysis [10,11]. The dominant
energy mode analysis and the sequentially optimal pole
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assignment techniques will be briefly introduced.

3.1.1 Dominant energy mode analysis :

The transfer function of the output to the control input
the ith control area

H (90 _ c.(s1-A)"1B,
p; Ui(s) i i i
can be expressed by
=1
1 hk
H, (s)=
A M

The energy contribution of the kth dynamical mode g, ¢
be measured by the dynamical dispersion coefficient

n

kak/g d;
=

2 hh.
where d.=§ stk j=1,2,..,n, are coefficients of
i
i1 (k)

variance of output normalized to the variance of white nois
input. The importance of the dynamic mode p, to the
control-area output y; can be determined by how the absolutt
value of Dy is large compared with the other dynamici
dispersions. However, the importance of poles of long time
constant may be underestimated for LFC dynamical systen
dominated by poles of short time constant. In such a case the
h,’s coefficients in eqn.6 is divided by a weighting factor
equals the eigenvalue y, [10].

For the optimal regulator problem (reference input; r,=0),
the dynamic modes located too close to the imaginary axis
and dominated in both transfer functions of the output to the
control input H_(s) and the output to the disturbance inpuf
Hy(s) will be shifted.

3.1.2 Sequential optimal pole assignment :

Given an open-loop system or an already optimal feedback
system, a weighting matrix Q;, 1= 1,2,..,N, can b
sequentially build up, based on the following procedure,
that s; dominant energy closed-loop eigenvalues can

located in a specified region. :

The algorithm for shifting s; distinct exgenvaluesl
(Apy--»Ag) may be described as follows [9] (lower suffixl
for ith area will be omitted for simplicity) :
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linitialize Q=0 , K=0, j=1, for an open-loop system,

orQ=Q, , K=K, ,j=1, for an already optimal feedback

system

lstAl = A + BK .

3 compute the left eigenvector v; of A’ corresponding to

ral N (or v; = vj" + v;° corresponding to complex

wonjugate eigenvalues X , Ay )

4(a) shift real eigenvalue to p.

compute = vTBR IgTy Y Q5= (p )\J )/hJ k] ()\J
AL and

é ;K 1577,
) shift real part ot) complex conjugate eigenvalues to p;

PTBR'BTv"” v""BR'BTy,
compute HJ = & -t and
Vi BR"Bij Vi BR"Bij

; 0
Q- as follows :
0 q

| compute positive real root q, of (ag> + bq + ¢ = 0),
W h e r e

)2
|=—(h"4£ - H , b=2(h;+h,)) B* , c=4a’p?, A,=a~

2 select the left real shift p;

3 compute g by the formula given in [9]

4if g < q, compute damping of assigned complex
conjugate eigenvalue by the formula given in [9] and
proceed forward, otherwise decrease the left real shift P;
and go back to 3.

11
is the matrix of

5 -1
5 compute K;=W, W, ,K
21
gigenvectors of the canonical matrix
N & -H, A
Q - B =

complex conjugate eigenvalues. Now,

corresponding to the assigned

@ (r

Q=py viQ, L  K=-R7 vk, ,(
j

i
3.2 Global optimality of the decentralized control law :

M.Ikeda and D.D.Siljak [12] have proposed a condition
lhat ensures the global optimality of the decentralized
optimal control law eqn.4. Yang et al. [13] has improved the
condition of global optimality of [12] to a more simplified
equivalent form.

The local decentralized optimal control law of eqn.4 is
globally optimal for the interconnected system, with respect
1o a modified cost function to include the additional terms
using from the subsystem interactions (as defined in [12]),
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as long as [13]

A
m(Q) >V ,i=1,2,..,N (8)
PV D)

for each control area, and the global detectbility condition

[12] is satisfied. Where A_(.) , Ay(.) denote the minimum

and maximum eigenvalues of the indicated matrices, and V

is a positive number calculated in the following steps :
Step 1 : Form a normal matrix T={t;},i,j=1,2,..,N, with
all diagonal elements t;=1 and off-diagonal elements
= | Al Let Z = max| Ag]) and o; = Z - [ Ag]] + 5.

where 6 > O and the initial value of 6 can be chosen as

1.

Step 2 : Calculate the P-F (Perron-Forbenius) eigenvalue

of T

Step 3 : Change the T matrix by increasing & with a

positive increment if P-F eigenvalue of T is greater than 2,

then multiply the off-diagonal elements in the ith row by

ey 1= l, ,N untll the P-F eigenvalue of T is < 2 and

update o;", 8", T".

Stepd:SetV =22Z + &)

3.3 Design procedure:

The recursive design procedure is proposed as follows :
(a) 1=1

(b) If i > N then go to step (f), otherwise set Q,=0,
K;=0 for the open-loop system A;.

(c) Perform the dispersion analysis for the closed-loop
system (A; + BK;) and select the s; eigenvalues to be
shifted. If all dominant energy modes are located in the
desired region then go to step (e).

(d) Assign the selected eigenvalues sequentially in the
desired region. Update Q; and K| and then go to step (c).
(e) i=1+1 and then go to step (a).

(f) Check for global optimality. If the condition in eqn.8
is satisfied then stop, otherwise the weighting matrices Q,,
1=1,2,..,N, are tuned sequentially as explained previously
in section 3.1.2.

4. APPLICATION TO A TWO-AREA
INTERCONNECTED SYSTEM

The proposed decentralized optimal LFC design procedure
is applied to the two-area Egyptian power system. Data for
the system are taken from [5] and are given in the
Appendix.

Initially, the unstable zero eigenvalues of the open-loop
systems A; and A, are assigned to -0.1 and -0.15;
respectively, and the dispersion analysis are tabulated in
Tables 1 and 2.

B 89



EL-GAMMAL: The Optimal Decentralized Model Load-Frequency

Table 1. Eigenvalues of initial system A,.

Dynamic
Dynamic Modes Dispersion
Hy(5) | Hy®
A =-13.5327 0.0% |-0.02%
A, =-1.2963 44.76% | 29.6%
A3 +A4=-0.5229 + j 2.4897| 60.556 |74.52%
As=-0.1 -5.32 -4.07

Table 2. Eigenvalues of initial system A,.

Dynamic
Dynamic Modes Dispersion
H®) | Hy®)
A =-13.5463 0.0% |-0.002%
M +A3=-1.1643 + j1.9745| -0.15% | 2.44%
Ay=-0.15 100.15%| 97.56 %

Starting from the initial systems (Tables 1,2), the results

the design procedures
decentralized controllers are tabulated in Tables (3) and (4).

to compute

the optimal

Table 3. Eigenvalues of closed-loop system A,.

Dynamic Modes Dynamic
Dispersion
Initial Eigenvalues Closed-loop Eigenvalues H(s) Hy(s)
A, =-13.5327 -13.5327 -0.08% | -0.7%
A;=-1.2963 -3 127.4% | 107.8%
M+Ag=-0.5229 + j2.4897| -2 + j 1.5024 -181% | 1.08%
As=-0.1 -0.1 9.1% -8.8%

Table 4. Eigenvalues of closed-loop system A2.

Dynamic Modes Dynamic
Dispersion
Initial Eigenvalues Closed-loop Eigenvalues Hy(s) | Hg(s)
A =-13.5463 -13.5463 -10.81%| -7.96%
A,=-0.15 -12 20.27% | 14.96%
A3+Ag=-11643 + j1.9745| -3 +j12073 |9054%| 93%

The computed weighting control matrices Q; and Q, are

then tuned by shifting dynamical modes (-13.5327,-0.1) of
A, to (-20,-8) and (-13.5463) of A, to (-19) to ensure global
optimality.
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The global optimality procedue are evaluated on
diagonalized systems of eqns.2 by using the transformati
(X;=U,Z;; U; is the modal matrix of A;). The compu
results are as follows :

Q,=U, Q, U, =diag(889.2,280,280,118.4,100.002)

Q,=U, Q,U, =diag(1016.2,1016.2,140.6,145.4)

Ap(Q)) =100, \4(P;)=1.96

1 0.2971
T = =50 l
‘.9576 1 }

and

The decentralized state feedback gains are :
K, = [0.4092, -9.8857, -9.5152, -2.2241, -33.066]
K, = [-9.9660, -10.5774, -2.4655, -25.2602]

The two-area Egyptian power system with
decentralized controllers has been simulated for a step I
disturbance AP;;=0.01 P.U. M.W and the responses
frequency and tie-line power deviations are plotted
Figures (1) to (3). For the purpose of comparison,
responses of Af; , Af, and AP,  of the system w
decentralized controller of K.Ramar et al.[7] and optir
centralized controller have been plotfed on the same graj
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From the simulation results shown in Figures (1)- (3) we
can conclude that :

(a) The transient performance of the closed-loop system
with the proposed decentralized controller 1s much
superior than with the controller of K.Ramar et al.
[7].

(b) The control technique adopted in this paper succeeded
in stabilizing the system 1n a very small period (about
5 sec) and the control trajectories are very close to
the optimal ones.
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5. CONCLUSION

A fully decentralized optimal feedback control scheme has
been introduced for use with multi-area interconnected power
systems. The design procedure of local controllers is based
on a sequentially optimal pole placement method of Solheim
[9]. The eigenvalues to be shifted are determined properly
by using the concept of dominant energy modes. Since the
left shift of dominant poles are selected and the effect of
transfer function zeros has been considered in the dominant
energy mode analysis, very good control performance can be
obtained. The computed weighting control matrices of local
control areas can be sequentially tuned so as to satisfy the
condition of Yang et al. [13] which ensures the global
optimalityofthe interconnected system. The design procedure
is computationally quite attractive and the simulation results
of the two-area Egyptian power network demonstrate the
efficiency of the proposed design mode.
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7. APPENDIX:

7.1 System dynamic model

The dynamical model for a single-machine area equivalent
model, taking into consideration the speed governor backlash

nonlinearity, is summarized below. However, more details
can be found in [5].

speed governor
. 1 8 1 b, 1
AX_()=-—AX_ ()+——(AP,()-—Af(t))+—— (AP -—Af
gvi 'r". i TM d R‘ i -r“ d R‘
turbine-generator

; 1 1

power system

2t = -2 At - £ (A ©-AP.@®+AP
iv/ = 2H‘ i _zil p&_j( ) ﬁ( )+ a(t))

tie-line power

N
Bbus = 3 T(AL0-A50)

i=1,2,..,.N
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and area control error
ACE, = APﬁ“i + B,Af,
where

f° &  nominal system frequency
D a load-frequency constant
H & inertia constant
R a self-regulation of the generator
Tgya  govemnor time-constant
T, a turbine time-constant
T;a synchronizing coefficient
Afa  incremental frequency deviation
AP.a incremental change in speed changer position
AP4a  incremental change in load demand
AP a incremental power generation level
AP, 4 incremental tie-line power
AX,, a incremental change in valve position

7.2 Data for the example system :

The two area Egyptian power system is considered with
the following data [5] :
P, = P, = 2000 MW; H, = H, =S5 sec,

D, =D, = 8.33x102P.U. MW/Hz; T, = T, = 03
sec,

Tgvl= Tgv2 = 0.08 sec; R; = Ry = 2.4 Hz/P.U. MV,
P, max = 200 MW; T, (at nominal frequency) = 0.545
P.U. MW,

B = By = 0.425; APy = 0.01 P.U. MW; APy, = 0.0

Furthermore, the speed governor backlash coefficients are
calculated and are given by

81 = 82 = 0.8; bl = b2 = -0.2/%.

The control weighting matrices R; and R, are selected to
be unity.
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