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ABSTRACT

Polynomial factorization in the finite Galois field GF (2™) is the basis of the design of good error correcting codes. In this
paper, a simple algorithm for polynomial factorization in GF(2™) is proposed. Interesting properties of prime polynomial

factors are deduced.
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1.INTRODUCTION

In recent years, Galois fields (GF) have received attention
in the area of communications, with applications in error
correcting codes [1-3] and cryptography [4]. The finite field
GF (2™) contains 2™ elements which can be represented in
several forms. Although all calculations are carried mod 2,
and no carries are involved, GF (2™) arithmetic is a complex
and difficult task. Recently, Yeh, Reed, and Truong [S]
have developed systolic architectures for performing the
operation ABC in GF(2™) that are suitable for use in VLSI
systems.

Polynomial factorization in GF(2™) is used in the design of
good error correcting codes. The common approach is to
compute the GCD of several polynomials over a finite field
using direct commands in MACSYMA or in MAPLE
software mathematical packages.

In the present paper we introduce a new simple and easy
to implement recursive algorithm for polynomial
factorization in GF(2™). Computer results are in agreement
with previous published results [6,7]. Some interesting
properties of prime polynomials are deduced.

2. POLYNOMIAL FACTORIZATION IN GF(2™)
Given the polynomial f(x) of order n,

m
f(x) = E a;x';a,¢ GF(2),
i=0
it is required to determine the prime factor polynomials of
f(x) in GF(2™); all operations are carried mod 2.
We define the decimal equivalent of f(x) as a decimal value
F obtained by substituting for x the value 2 so that

m .
F=Y a2
i=0
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A prime factor polynomial p (x) in GF(2™) is defined as a
polynomial that is irreducible in GF(2™). A list of all prime
polynomials of orders up to 8 is given in Table I. The
polynomials are written in their decimal equivalent.

The steps of the proposed factorization algorithm are as
follows:

1. INITIALIZATION.

A list of all prime polynomials of order up to n-1 should
be available. If not, the algorithm is capable of generating
such a list iteratively as explained in 7.

2. CASE L. Direct Polynomial Factorization.

We calculate F, the decimal equivalent of f(x).
For any prime polynomial p(x) of degree less than n, with
decimal equivalent P, if F is divisible by P, then p(x) is a
factor of f(x) and F can be put in the form

F=HE, H | >3

where H is the quotient of F/P. Proceed to step 6.
3. CASE II. Augmented Polynomial Factorization.

If no prime polynomial satisfies the condition in step 2, we
check all possible missing terms in f(x) due to multiplication
in GF(2). A typical missing term is 2X in which the
coefficient 2 is equivalent to O in GF(2). We construct an
augmented form of f(x), denoted by g(x), by adding to f(x)
all different combinations of all middle terms multiplied by
2 as follows:
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m-1
gx) =f(x) + X; 2bix' ;bie GF (2)
i=
m . m-1 )
= E a;x'+ Y 2b;x';a;,be GF(2)..
i=0 i=1

We then calculate the decimal equivalent of g(x) denoted by

G.
4.

If G is divisible by P, the decimal equivalent of a prime
polynomial p(x) of degree less than n, then we can write
G =HP, H> 1,
where H is the quotient of G/P. Proceed to step 6.
If both tests in steps 2 and 4 fail, i.e., neither F nor G
are divisible by any of the prime polynomials of order
less than n, then f(x) is a PRIME polynomial and the
algorithm terminates prematurely. Otherwise, further
factorization is required.
The prime polynomial p(x) corresponding to P is a prime
factor of f(x). The resulting H has to be tested for
further factorization using CASE I or CASE II. The
algorithm stops if H=1, in which case, the polynomial
f(x) has been completely factorized.
Note: This algorithm can be used to generate the list of
all prime polynomials of order up to n-1 by trying to
factorize all the 2"-1 polynomials in sequence, given that
the first known prime polynomial is p(x)=x. The
algorithm is repeated recursively for each polynomial and
whenever a prime polynomial is obtained, it is added to
the list.

Table 1. A list of prime polynomial of orders up to 8.

Order : Prime polynomials

NN AW -

12,3

: 7

: 11,13

: 19,25,31

: 37,41,47,55,59,61

: 67,73,87,91,97,103,109,115,117
:131,137,143,145,157,167,171,185,191,

193,203,211,213,229

1 239,241,247,253 ,
: 261,283,285,299,301,313,319,333,341,351,

355,357,361,369,357,379,391,397,415,419,425,
433,445,451,463,471,477,487,499,501,505

To clarify.the algorithm, we give in the following the
partial results and final factorization of all the polynomials
f(x) of order at most 3, (i.e. n=3)
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Order f(x) g(x)
x
teX
x)
2 i
1 2XeX
‘
Te l‘
3
s
P 3
_'ZX "X’
& X
ceaxe2xtex?
x| px
1eX ozt
x*.x*
T
xex?x’
1exex?.x?

decimal facto:s
P G
1 PRINE
2 PRINE
3 PRIME
] 2.2 (X) (X)
5
3 5.3 (1eX) (1eX
© £ (X) {1+X)
2 PRIME
8 2,2,2 (%) (X)X
9
13
17
21 3.0 (1+X) (1+XeX")
10 2,3.3  (X)(1+X)(1eX)
1" PRIME
12 2,2,3 (X)(X) (1K)
13 PRIME
14 2,7 (X) (1eXex?)
15 3,3,3 (1+X)(1eX) (142

Table II gives the factorization of all polynomials of ord
up to 8 with coefficients in GF(2) obtained by the pres¢
algorithm. The polynomials are written in their decim

equivalent.

Table II. Polynomial factorization for orders up to 8.

v A e m oW
" %
.

Rel Rl WG S
.
“

No.

64:2,2,2,2,2,2
65:3,3,7,7
86:2,3 1
67:¢ ----PRIME
68:2,2,3,3,3,3
59:11 11
70:2,7 13
71:3 61
7212,2,2,3,7
73:€- e PRINME
74:2 137

Ty Ny, 3, 3
76:3,2 19
77:3 89

78:2 11,3,3
79:7 2%
82:2,2,2,2.3.3
81:13 13

82:2 &1
83:3,7 1
84:2,2,7,7
8s5:3,3,3,3,3.3
86:2,3 25
87:¢-- - -PRIME
88:2,2.2 1
89:3 55
90:2,3.,3,3.7
91:¢-----PRINE
92:2,2,3 13
93:7 N

94:2 47
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12812,2,2,2,2,2,2
129:11,3 13
130:2,3,3,7,17
139 1€ PRINE
132:2,2,3 N
133:7 88

134:2 67

135:3 25,3,3
136:2,2,2,3,3,3,3
137:¢- - -PRIME
138:2 11 11
139:3,7 19
140:2,2,7 1)
141:41,3,)
142:2,3 &
143:¢-- - PRINE
18412,2,3.3.3,1
145:¢---nn PRINE
146:2 73
147:47,3,3
148:2,2 37
149:3 118
150:2,3 13,3,3
181:7,7 11
152:2,2,2 19
153:3,7.3,3,3,3
154:2,3 59
155:13 31
156:2,2 11,3,3
1831¢-=- == PRINE
158:2,7 2%

192:2,2,3,2,2,2.3
193:¢ PRINE
194:2 97
195:3,3,3,2,7
196:2,3,7 1
197:3 67
198:2,3,3
199:11 19
200:2,2,2 25
201:3,3 6°
202:2,3,7 13
203: < - -PRIME
204:2,2,3,3,3,33
405:7 .a'.'

206:2 103

207:3 11 N
208:2,2,2,2 13
209:3.7 2%
210:2,3 11,33
211:¢ - --PRINE
212:2,2,0 19

v BB T E GaEE PRINE
214:2.2,1.7
215:3,3 %
216:2,2,2,03,1
217:11 N
218:2 109
219:3 13
220:2,2 55
221:13,5,3,3,2
2:2:2,3 17
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two or more prime factor polynomials of overall order

EAREY PRIME 95:19.3,3 159:3 117 423:7 @ v .
32:12,4.2,2,12 96:2,2,2,2,2,3 160:2,2,2,2,2,3,3 224:2,2,2,2,2,7 (d) follows the same rule mentioned in 2. Table IIIb
33:3 N 97:<--+--PRIME 161:7 59 225:3 19,3.3 . .« s e .
$403.5.5.5.53 Sy iy Seied 7355 T shows the number of polynomials divisible by prime
35:7 13 99:3,3 1 163:3 97 227:11 2% 1 mb' ’ons
36:4.2,3.7 100:2,2 25 164:2,2 @ 228:2,2 13,3,3 pOIynomlal col mn #
37:¢-----PRIME  "G1:3,7 13 165:3,3,3 31 229:¢e . PRIME " Up to a given order n, there exist emﬂy (n/d)
Ib:z "3 1€2:2,)3,3,3,3,) 166:2,3,7 1 230:2 115 5 A
320 103:¢ - --PRINE  167:¢-----PRIME  431:3,7 3: polynomials having one repeated factor of order (d), and
Ws,6,6:3.3 10e:2,2,2 13 168:2,2,2.7,7 233:2,2,2,3 3 = ~
) i voeis s less 1os P no other factor. To clarify this property, consider all
§dva; T 106:2.3 16 170:2,3,3.3.3,3.3 234:2 117 polynomials of order at most 4. There are exactly four
13 48 107:2,7,9 LA Y T FPRIME 235:3,3 58 k| !
o 198:2,2,3,3,1  172:2,3,3 25 236:2,2 59 polynomials that are factorized by (x) only, four by
-¥15,8,8 199:¢- -0 PRINZ 173:11 19 237:3 N
Fan i - . sasm 16 41 (1+x) only, two by (1+x+x?) only, one by (1+x+x*)
PRIME 1143 37 175:3,3,7 13 239:¢----.PRIME 2 3 3 “mber
4812.4:.4:38,4 192:2,2,3,2,7 176:2,2,2,2 240:2,2,2,2,3,3,3 and One by (1+x +x ). Table HIC hSts the o Of
PR 113:3 43 177:37,3,3 241:¢-- - -PRINE lynomials having this property.
$0:2 2% 14:2 13,3,) 178:2,3 55 242:2.7 19 w yn g
$v:3.3,9.3.3 118:¢----« PRIME 179:7 &) 243:3 13 1}
32:2,2 1) 16:2,2,3 11 180:2,2,3,3,3,7 244:2,2 61 . . . .
315 1y 11Fi€ennnn PRIME 181:13 2% 245:3,3,7 1 Table m propemes Of wlynomlal fwmuon'
$4:4,4,3,7 118:2 59 182:2 9 246:2,3 O
$S:v- -~ -PRIME 119:7,3,3,3.3 183:3 109 247:¢ o v o PRINE
56:2.2,2.7 120:2,2,2,3,3,3 180:2,2,2,3 13 248:2.2.2 31 (a) Number of polynomials divisible by a prime polynomial
57:13,)3 121:7 19 185:¢- - - - -PRINE 249:3 87
$8:2,3 N 122:2 6° 186:2,7 31 250:2 25,3,3 Po.ynomial Total No. Prime polynomials and their order
291 ¢ PRIME 123:3 @ 893913, 9,%,3 251:7 37 FReT of Polyn. 2:1 3:1 752 h1:3 3:31eEe  25:4 31:4
®0:4,4,3,4,3 124:2,2 1 188:2,2 47 252:2,2,3,17,7 . 3 3 |
rico-n- PRIME 125:25,3.2 189:3,7,7,7 283:¢- PRINE 15 ? ? 3 1 A\ .
62:2 20 126:2,35,7,7 190:2 19,3,3 254:2 11 13 n 15 15 < 3 3 1 1 1
€2:3.7 “27:11 1) 197:¢---- - PRIME 255:3,3,3.3,1,3,) "] N 31 15 : & ? 3 3 3

g 3 63 63 33 15 15 17 ? 7

255 127 127 63 n 3 15 15 15

st 228 228 127 63 83 n 3n n

(b) Number of polunomials divisible by the prime
polynomial combinations and the order of the product prime
polynomials.

3. OBSERVATIONS.

From Table II and extensive computer runs, the following
interesting properties were deduced.

:i;: f:::;f order 3 golyno-nl; ord:r ln)7 d

-

1. If f(x) is a prime polynomial, then the reciprocal : 5;7 3 ‘ ? 5 13 ?g 4

polynomial of f(x), i.e., the one with reversed bit order, 2', " : A e

is also a prime polynomial. Examples of polynomuals, in 118 : 21 TN

decimal, having this property are 131 and 193, 137 and 11108 : PR S

145, 143 and 241, etc. it : TR

2. Up to a given order n, there exist 2°*! -1 polynomials, an : % § z EE

of which, exactly 2% 1 _ 1 polynomials have a common : 28 ; SR 7

factor of order (d). To clarify this property, consider all 2 %% 2 .

polynomials of order at most 4,i.e., with x* being the 37;; 6 B

highest order of x (31 polynomials). Consider also the < 58 & R

prime factors (x), (1+x), (1+x+x2), (1+x+x°) and 3 : ‘ 3 3

(1+x2+x3), which correspond to the decimal values 1 85 ¢ : § ?

2,3,7,11 and 13 and which are of order (d) 1,1,2,3 and e ‘ o

3 respectively. There exist out of the 31 polynomials ; E ]

exactly 15,15,7,3,1 and 1 having (x), (1+x), (1+x+x2), 23,19 ¢ : 3 :
23530 6 1

(1+x+x3) _and (1+x2+x3) respectively as common
factors. Table Ilia illustrates this property.
3. The number of polynomials divisible by the product of
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(¢) Number of polynomials having repeated common factors.

Poisynomial Total No Prire factor polynomials and their order
COrder of Polyr 2:1 3 7:2 13:3 13:3 19:4 25:4 31:4

7

3 15
4 3
S 63
€ 127
255

© s

@ Nu e s wN
® u e w N
L N R
B ma i s
P o
N e e s

1
1
1
2
2
2

R

4. CONCLUSION

We have presented a simple and easy to implement
algorithm to factorize a given polynomial with coefficients
in GF(2). This algorithm can be used recursively to generate
a table of prime polynomials in GF(2™). Some interesting
properties of prime polynomials are deduced.
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