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ABSTRACT

In this paper, we propose an new algorithm for the solution of the inverse eigenproblem. The algorithm falls in the
class of eigenvector methods. The main idea is based on the selection of a well-conditioned set of vectors from given
subspaces and the solution aims to minimize the sensitivity of the assigned eigenvalues to perturbation in the
matrices. The problem is formulated as an unconstrained minimization problem. The derivation of the gradient
expression is then obtained. Based on this expression and using some powerful Quasi-Newton methods, the new
algorithm proved to be efficient and numerically stable. A comparison in performance with existing methods is

given.
1. INTRODUCTION

Given a controllable pair ( A, B), the problem of obtaining
the matrix F such that the combined matrix (A + B F) has
a specified spectrum A is studied in the context of state
space-based synthesis methods in linear control theory [1].
Several methods are already proposed in the literature. There
are four different classes of methods, namely; (i) Traditional
techniques [1-4], which proved to be inefficient and
numerically unstable; (i) Matrix equation methods [5,6];
(iii) Direct methods [7-9], which do not, in general, lead to
robust solutions; and (iv) The eigenvector methods [10-13],
which are iterative techniques proposed to improve
robustness. The most powerful of all are the methods that
are based on the latter techniques. In this paper, we propose
an algorithm for the solution of the problem. The algorithm
falls in the fourth class and is iterative in nature. The matrix
Fis obtained by assigning linearly independent eigenvectors
corresponding to the required eigenvalues such that the
matrix of eigenvectors is as well-conditioned as possible.
The assigned eigenvalues are then as insensitive to

.~ perturbations as possible. The resulting matrix F is the
'~ reasonably bounded as may be expected. The sensitivity of

the matrix (A+BF) depends on the magnitude of the
condition numbers, then every reasonable measure of the
condition number is an indication of the robustness of the
eigenproblem. In this paper, we give a choice of such a
measure. This will lead to a function of several variables
that needs to be minimized. The gradient vector of this
function is derived and used together with a powerful Quasi-
Newton routine to obtain the limit point of the sequence. The
proposed method has been applied to several test problems
found in the literature and the results are compared with
known techniques.

2. PROBLEM STATEMENT AND SOLUTION

Given a real nXn matrix A, a real full-rank n Xm matrix B
(m<n) and a set L of n complex numbers A\, A, ..., A,
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closed under complex conjugation; it is required to find a
non-singular nXn matrix X and a real mXn matrix F
satisfying

A+BF)X=XA A=diag, X, ....\) (1
such that
(i) The eigenvalues of (A + B F) are A, Ay, ..., A5

(i) The eigenvalues of (A + B F ) are as insensitive

to perturbations in this matrix as possible.

It has been established by Wonham [1] that the inverse
problem has a solution if and only if the pair (A, B) is
controllable.

In [10] and [12], numerical algorithms for the computation
of robust solutions to the inverse eigenproblem have been
proposed. The technique described consists of three basic
steps.

Step 1. Decompose the matrix B as

VA
U] @
0

B-[U, .

where [Uo i Ul] is a real orthogonal matrix and Z is
nonsingular. The assumption that B is of full rank implies
the existence of this decomposition [10]. In order to
determine U,, U, and Z; construct orthonormal bases

comprized by the columns of the matrices S_, and § j for the
space

L; = N{U]",(4-N\D} €)

and its complement f:j for €L, j= 19208y N )
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denotes the null space; and the superscript * denotes
transposition.

The required decomposition of B can be taken as the
singular value decomposition (SVD) in which case
Z =LV® where L = diag(o,,0,,...,0,) is a positive
matrix and V is orthogonal [14]. Alternatively, the QR
decomposition could be used, in which case Z is an upper
triangular matrix [15]. It is to be noticed that the QR
decomposition is computationally less expensive, but the
SVD gives useful information on the singular values of B.
The construction of the bases for £ ; and £ j 1s also achieved

by QR decomposition of [U," (A - \;1)] * as

(0" (A-\D1* = (8,8 [ } “

then §; and Sj are the required matrices.

Alternatively, we determine the SVD of [U;" (A - \,1)]
in the partitioned form

(U)" (A-ND] = T[T;,01(8;,5)] )

where T'; is the diagonal matrix of singular values. Then the
columns of §; and §; give the required orthonormal bases.

Step 2. Select vectors x;=S;w; €T; with Ixj|2=1,
Jj=1,2,...,n such that X=[x;,x,,...,x,] is well-
conditioned.

Step 3. Find the matrix M = A + B F by solving the matrix
equation MX = XA and compute F explicitly from

F=Z'U'(M-A) (6)

The matrix M = XAX ! is constructed in this step by

solving the equation X *M * = (XA)"* for M * using the
direct LU method [15]. This process is stable for a well-
conditioned matrix X. The computation of F id then achieved
by straightforward matrix multiplication in the case where Z
is given by the SVD process, or by using back substitution
to solve the equation ZF = U;(M -A) in the case where
Z is given by the QR process.

The key step in this procedure is Step 2. In [10], four
methods for accomplishing this step were described, while
in [12], a more efficient method was presented and
discussed. The methods are all iterative, common in steps 1
and 3; and all aim to minimize different measure of the
conditioning of the matrix X.
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In step 1, we note that the decomposition can be carried
out most efficiently if the matrix to be decomposed is first
reduced to a staircase form [16]. This requires less than

n*(3n+m) operations. The number of operations needed to
ﬁnd each subspace is then m(n-m)(2n-m) or a total of
O(n°m). The computation of M in step 3 requires O(n3)
operations and the computation of F needs O(nm?)
operations. We note that the total amount of work required
in steps 1 and 3 is comparable to the number of operations
needed for one iteration in step 2, and is not a significant
factor in the total operation count. Standard library software
for obtaining QR and LU decompositions of matrices and for
solving systems of linear equations [17] are used to
accomplish these two steps.

2.1. Measure of Robustness

In this subsection, measures of robustness of the
eigenproblem (1) are presented. LetX =[x,x,,...,x,]

and Y=[y,,¥2,.--,¥,] where ¥ = (X" 1).*. It is well-
known (see [18]) that the sensitivity of the matrix (A +BF)
depends on the magnitude of the condition number ¢; where

= 155050, 21 ™

Hence every reasonable measure for the magjnitude of the

vector C =[¢cy, €4, ..., ¢,] * is a reflection of the robustness
of the eigenproblem (1). A number of different measures of
the robustness of the eigenproblem (1) are considered in
[12]. In this paper, we consider the following measures.

Vc= ICIz/ﬁ, (8)

ve(D) = | DC|,/| D], ©)

where D is a real diagonal scaling matrix equals to diag (d;,
dy, ..., dy), with d; =0 for all j. which is applied to the
matrix Y * of left eigenvectors. More details on measures of
robustness can be found in [10].

The aim of this work is to propose a new method for
accomplishing Step 2 by iteratively constructing a well-
conditioned set of eigenvectors from given subspaces. Our
proposed scheme aims, at each step of the iteration, to
reduce the value of the measure of robustness. -

3. THE PROPOSED ALGORITHM

In this section, we present the suggested algorithm for
iteratively constructing a well-conditioned set of eigenvectors
from given subspaces. The objective here is to choose
vectors x; € L;, j=1,2,...,n, so as to minimize the
measure of conditioning » C(D) defined by equation (9).
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3.1. Main Procedure

Assume that II; is the column space of the set of real nXm

. L] o
matncessj, Sj Sj=l,J=1,2,...,n.Let

X=[x1,x2, ...,x"],

Xj=[xl,x2,. .y J l' J+l,...,x"]
=[X"'1*=[y;,¥2,---»¥,), and
07, 0
P,=|1 0 0 (10)
0 0 I,

where IJ is the n Xn identity matrix, and

S W, '=[wl""'rw WJ+1 .""'w;] (ll)

-
J7J =18

where w; are m X1 real vectors. Then

Using the SVD, we get

where u; are nX1 real vectors,

J
Ej=Mag(09),...,a,?;)l),
(U, u;] and V; are orthogonal matrices and
X;=X;(w;), Ui =U;(W)), uj=u;(%)),
V;=V;(#)) and L;=L;(W;) (13)
Therefore
Y =Pi[x;, X;1°
0 1/u'x || U’ *tu
7 il.p ujlu;x;
o wak " {cad 4 bagk
i%i = “
Thus

=u;j(W;)/ uj(w;) S wi,j=1,2,...,n (14)
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Hence, for all j, we have

n n n
2
v§=.>: (dﬁc})/_z d,~2=,z 5, 1512 1y;13

it 5w’ w.

E et i)

= f(w) (15)
J=1 [uy(w)) *S;w;1? d

where
welw,wy,...,w 1%,
b Wi= (Wi Wajs ey W) " j=1,2, 00 ,m
5"‘1/211 >0 VvV, and Ea . (16)

j' J-]

From this analysis, the idea is now to solve the
unconstrained minimization problem: Minimizef(w)
defined by equations (15) and (16), where w is a real nm X1
vector. Let

Aj(r"j) & XJ-(WJ-)XJ-(WJ-) i (17)
Utilizing equation (13), we have

() 0
0 0

Uw)*
u,(%)"

(ﬁ/)=[l]/(wj)puj(ﬁj)]= (18)

Assuming that the matrix X;(#;) is of full column rank,
then the diagonal matrix L;(#;) is nonsingular andu; (W)
is a unit eigenvector of A j(ﬁj) corresponding to the simple
zero eigenvalue.

It is well-known that the eigenvector uj(!?'j) may be
defined as a real analytic function in some neighborhood of #;
[19] and the partial derivatives of uj(ﬁj) with respect to
w__ can be represented as follows,

Pq
du;(w;) %,
= Ui (W) E; (%)) 2U; (%)) * ’( ’)u‘(ﬁ‘ﬂ’
Pq Pq
q#j, p=1,2,....m (19)

Since A;(W)) = Y Spwgw,Sy, then
k=1,k#j
9A;(%))

awpq

w)Sg. a#j (20

=Sq(wqep +

where [ is the p -th column of 7. Combining (19) and
(20), we get
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3(uj(Wj) )

- - - -
3w = -u;j(w)) "Sg(wae, +e,w,) S,
Pa

U (%)L (h) 2 Uy(9))* 1)

and

a(u; (W) #) = - .
:'iw: — = —[u(#) Sqwam+squj(wj)wq.]sq

A =2 -
Uj(ﬁ’j)zj(”’j) Uj(WJ-) (22)
Let Vf(w) be the gradient vector and let

f(w) _ af(w)’af(w)’__‘,3f(w) 4=1,2,..n (23)
a"! awlq a“’zq aw-a
then
srmY (armY  (arom Y|
v = s ot
ﬂw[""’l)(a"z){a’%) 5
Combining (15), (23) and (24), we get
v - Ya%a5¢%s(%g)
f(W) _ 5 ug (W) 'Sywy
q » -
Heg g (37Sgw)
3 E 5jwj W, Y(,-,q)(”') Squ(Wj)Sij '
j=lj=q uy(W;)"S;w; [uj(wj)'Sjwj]2
g=Li2;.:0 (25)
where
Yoy (W) =w;(R) S w Lo+ S Jui(R)w,, (26)
and
X -2 *

From the previous analysis, the following theorem holds.

Theorem

Suppose that Xj(ﬁj), Uj(Wj), uj(wj), zj(wj) and f{w)
aredeﬁnedagin(lO)to(B). Assume that the matrix
Xj(Wj) for j=1,2, ..., n are of full column rank. Then the
formulae (24) to (27) give the expression for the gradient
vector Vf(w).
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3.2. The Optimization Procedure

Several powerful gradient methods are available in
the literature. Amongst the most powerful are the Quas
Newton Methods [20,22]. The Quasi-Newton technique
Davidon-Fletcher-Powell [20] is now applied to minimize th
objective function f (w ), using the gradient expressio
derived in the previous subsection. We present here the basi
steps in the new procedure.

Initialization Step. Let € > 0 be the termination criterior
Choose an initial real vector (mnX1)

w0 o [w(lO) t' ng) o' bl ”'510) t] vy j
and an nm Xnm positive definite matrix H .

Main Step
1. Letk:= 0.
2. Compute g, =Vf(w®), d; = -Hyg,.
3. Determine w**1) =w® 4+ )\ d, using line seard
along the direction d; [20], where
f(w(")+)\kdk) = min f(w(")+)\dk)
A>0

4. Set Aw® = wk*D_y® 1 Jaw® |, <
STOP, w = w® is an approximate optimal solutior
if [aw®],> ¢, GO TO Step 5.
5. Compute gy, =VAw* D), vy=g;.1 -8
Aw(")(A w(k))‘ ) Hk‘yk-y;H,:
(AwB)y, viHv, ,

anddy | =-Hy,  8k.1-
6. Replace k by k + 1 and GO TO Step 3.

Hy,  =Hp+

Some remarks are now due.
Remark 1. At the initialization step, if the initial vector w'
is chosen such that for some j of indices 1, 2, ..., n; th

matrix Xj(ﬁ'}o)) has a very small singular value, then w
must choose another initial vector.

Remark 2. At step 2, we compute Vf(w®) by the formul:
@) @), in whih te SVDs X, (#$%), X,(#®), . x, ("
are obtained by standard routines. The matrix X;(» "))

obtained by rank-one update of the matrix X, (")

hence it is necessary to develop techniques for updating tt
SVD [21].
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Remark 3. At step 3, the line search technique is based on
curve fitting procedures, such as quadratic or cubic
interpolations [20].

4. NUMERICAL EXAMPLES

To illustrate the effectiveness of the new procedure,
several numerical examples were solved. Among them the
problem given in [12]. A comparison between the new
procedure and existing techniques are also presented. In the
test example, n=3, m=2 and

0 1 1

1
A=(0 0 1|, B=|(0
6 -11 6 1

— e O

The eigenvalues of A are {1,2,3}, thus the pair (4, B) is
controllable but unstable. We assign the set of eigenvalues

= {-0.2, -0.2, -10}, as in [12], and we compute the
matrices X and F such that A+BF)X = X A, A = diag (-
0.2,-0.2,-10). Step 1 as described in the previous section
gives,

0.842844 -0.359245
0.492834 0.216164
0.216169 0.907862

sl=S2=

-0.817060 0.557086
S3=| 0.418760 0.396300
0.396300 0.729796

The condition number of S =[S,,S,, 53] is G(S) =
3.65057, and a matrix F with good conditioning is expected.
The proposed method is applied on this test example.
Floating point numbers are represented by a double precision
56-bit mantissa and a 7 bit exponent to radix 2, whence the
machine precision is 7.22E-16, tolerance 0.1E-37. When

choosing w(® = [w(o) 50) (0) I* with
1/y2

1 0
0 1 l/ﬁ

% an initial vector with weights §,=8,=68;=1/3, after 4
iterations, we obtain

0.88322 -0.50356 -1.12971
X = [0.49861 0.12788 0.35651 |,
0.11429 0.86170 0.22162
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2.44276 -3.78554
F = | -6.22520 7.44796
2.24393 -4.27650

where | X, |2 100635, | X, 1, = 1.00620 and
I x5 ],=1.20

In Table 1, the results obtained by applying the new
procedure are given together with the results of the
procedure in [10] and [12].

Computational practice showed that the choice of an
approximate initial vector w® is important (see remark 1, in
the previous section). It is worthwhile to point out that we
can use the procedure in [12] to produce a reasonable initial
vector before applying the proposed scheme. For example,

(2 =w§” =wi? = (Y2, 1/y2)" as an

if we choose w; =w
initial vector, then we ﬁnd that the 3 X 2 matrix

X5 =18, wi®, S, w5 s not of ull ol sk In it X
has singular valnes {2,0}. Consequently, in this case, it is

impossible to compute the gradient vector Vf(w (0)) and to
proceed with the new method. But when using the above
mentioned initial vector, with the method in [12] and taking

Y12=Y13="Y23=1/¥3, &?=0.7 and w=2.75, then after two
iterations we get w (%) = [wl(z) * wéz) & w3(2) *1* in which

w w s
1 -0.747726 [ 2 0.434683

0.912127
w® _
3 0.409907

(2)=[ 0.664007 | (5) 0.900583]

Then taking w® as a new initial vector with the new
algorithm, and after 7 iterations we obtain, with
8,=98,=083=1/3, a good solution

0.54844 1.11890 -1.28961
X = | -0.13971 0.59312 0.40691
-0.93949 0.14354 0.25292

-4.49346 -3.65376
F = 8.00917 7.73998
-3.83710 -4.18704

where | X, |, = 1.08778, | X, |, = 1.27450
and |X3 |2 = 1.37573. The corresponding condition
numbers are ¢; =1.40408, c,=1.40426 and c;=1.78887.
The computed matrix F has

|.1,=13.7656.
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5. CONCLUSION

The inverse eigenproblem is transformed to the simple
problem of function minimization. The measures of
robustness form the parameters of the objective function to
be minimized. The gradient expression of this function is
then derived and used together with an existing Quasi-
Newton method to obtain the solution of the problem.

Numerical results have shown that this new technique is
stable in terms of computation behaviour and the
convergence is achieved at the limit point of the iterative
process. A comparison between some existing techniques
and the new procedure showed that the proposed method is
superior in terms of computation requirement and
effectiveness.

Table 1. Results for the methods in [10] and [12] and the proposed method. (N is the Number of iterations).

Method [e; ¢ 51° lel, Ixi,1x7t}, 17|, N
Method 0 in [10]
1.34
1.47 2.7221 3.27320 16.4600 A
1.79
Method 1 in [10]
1.473 |
1.425 2.72095 3.27316 16.4617 1
1.789
Method 2/3 in [10]
1.59
1.41 2.77850 3.28270 16.4600 L
1.79
Method in [12] with a*=0.7, r 7
=13 . 2.97091 3.36093 17.5298 15
[ 1.789 |
Method in [12] with a*=0.9, r "
2.75 '=/0.45 LN
W=2.79, Y12=713=V V42,
1.789 2.72093 3.27317 12.6006 2
Y23=v0.1 [ 1.789 |
New method with o 7
1.39478 2.66307 3.27932 11.7000 4
| 1.78934
New method with s 7
8,=8,=0.1, 3,=0.8 1.39470
1.39464 2.66307 3.27371 11.8064 4
| 1.78934 |
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