MODIFIED FIGURE OF MERIT TO DESCRIBE THE WAVE PROPAGATION IN WAVE GUIDES ## Anwar A. Aboul-Enein Electrical Communication Department, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt. #### ABSTRACT A newly introduced term "Figure of Merit" is proposed cast and employed to investigate both qualitatively and quantitatively the propagation problem in nonlinear optical waveguides made of either GeO_2 (x)-SiO₂ (1-x)or Al(x)Ga(1-x)As. Three basic parameters are handled in such design, namely, the optical confinement factor, the transmitted bit rate, and the power-pulse width square product. In this paper the dimensionless analysis is applied and the problem is studied under wide ranges of variation of the affecting parameters as sources parameters, detectors parameters and waveguides parameters. A comparison of the two guide is made under the same set of the affecting parameters. #### 1-INTRODUCTION The propagation of nonlinear optical pulses in dispersive media in the presence of inhomogeneities had attracted the attention during the last two decades [1-4 for examples]. These pulse-type stationary solutions of nonlinear dispersive wave equations are handled mathematically, physically and experimentally [5,6]. Solitons in optical communications are now considered to have a potential application to high-bit-rate transmission systems. A critical limitation in realizing the full-bandwidth capability of these systems is pulse distortion due to dispersion which is overcome via nonlinear dependence of refractive index on pulse intensity. Here, the dispersion effects result in the broadening of the pulse, while nonlinearity tends to shapen it. It is the appropriate competition of these opposite effects which may lead to a stable solitary solutions of the optical pulse [2]. In the study of such phenomenon either in planar optical waveguides [7-8] or in circular optical fibers, three major relevant topics of interest are in focus, namely i)the confinement factor [9], ii)the transmitted bit-rate, and iii)the power-pulse width square product. Each topic is studied separately. To the best of our Knowledge, no study has considered the integration of the three topics. Thus, in the present paper, a newly introduced term "Figure of Merit" is proposed, cast and employed to investigate both quantitatively and qualitatively the propagation problem, with the integration of the three topics, in nonlinear optical waveguides made of either GeO₂-SiO₂ or AlGaAs. #### II.BASIC MODEL AND ANALYSIS II.1 On The Confinement Factor The confinement factor, Γ , of optical pulses in nonlinear slab waveguide is cast as [9] $$\Gamma = \frac{P_f}{P_f + P_s + P_c} \tag{1}$$ where P_f , P_s , and P_c are the power flow per unit length in the film, the substrate, and the cover respectively. Γ has been correlated and the affecting sets of parameters under the form: $$\Gamma = \sum_{i=0}^{7} A_i (d/\lambda)^i$$ (2) where 2d and λ are the guide thickness and the optical wavelength respectively. $A_{i,s}$ are functions of the chemical structure of the guide as will as the launched optical pulses and the operating temperature. The injected optical power density P; is given as $$P_i = 2d(P_f + P_s P_c)$$ (3) In fact both P_f and P_s and P_c are computed by solving the nonlinear differential equations of the electric fields in the guide, substrate and cover layers with suitable coupling at the interfaces. The dispersion characteristics of the guide are evaluated based on Sellmeier equations where we have [10] $$n^{2} = 1 + \sum_{i=1}^{3} \frac{A_{i} \lambda^{2}}{\lambda^{2} - B_{i}^{2}}$$ (4) for GeO₂ -SiO₂ guide layer, where both A_{i,s} and B_{i,s} are functions of the chemical structure and guide temperature while we have [11] $$n^2 = C + \frac{D}{\lambda^2 - E} - F\lambda^2 \tag{5}$$ For (AlGaAs) guide layer, where C,D,E and F are functions of the chemical structure and guide temperature. #### II.2. On The Bit-Rate Based on the model of CSELT [12] and El-Halafawy et.al. [13] a formula for the system bit rate, B, is derived under the form: $$B_{r}^{2} = 8F_{r}^{2} \log (B_{max}/B_{r})$$ (6) with $$B_{\text{max}} = B_{\text{u}} \exp \left[-(\sigma L + \sigma_{\text{m}}) \right] \tag{7}$$ where B_u is the ultimate value of the bit rate of the system (it depends on the source-detector combination), σ_m is the marginal loss is the total guide loss and L is the guide length. The guide bandwidth due to dispersion cutoff caused by different mechanisms of dispersion in single mode guide is given by F_t [12], $$F_t = 0.44/(\tau L) \tag{8}$$ where τ is the dispersion per unit length of the guide. It is found that both τ and σ are temperature-dependent variables and consequently B_r , [13]. The ratio of B_r and F_t is of major interest and is cast as: $$(B_r/F_t)^2 = 8 \log \frac{(B_{\text{max}}/F_t)}{(B_r/F_t)}$$ (9) The system, in general, operates at the set of parameters at which the above ratio possesses its maximum value. As F_t increases B_r increases also; but as F_t reaches its maximum value (lower orders dispersion terms vanishes), B_r asymptotically reaches its ultimate value B_{max} . #### II.3 On Power-Pulse-Width Square The pulse width τ_p is related with the peak power, P_o of pulse [3] in a manner $$P\tau_p^2 = S f(\lambda)$$ (10) where S is the cross sectional area of the fiber and $f(\lambda)$ is essentially proportional to the group dispersion. In Ref. [14], the product $P\tau_p^2$ is analyzed under wide range of the affecting parameters in order to minimize that product. It has been derived under the form: $$P \tau_p^2 = 0.5 \epsilon_o v_g n^2 S \psi$$ (11) where $\epsilon_0 = 8.854 \text{x} 10^{-12} \text{ F/m}$, $v_g = \text{c/n}$, where c is the velocity of light in vacuum, and ψ is expressed in Ref. [2] as a function of waveguide thickness, laser wavelength, and linear and nonlinear refractive indices. As Planck's constant is given as $$h = 6.62517 \times 10^{-34} \text{ Watt.sec}^2$$. (12) the product has, the dimensions of Planck's constant h, therefore, the product is expressed in terms of dimensionless quantity, $\Gamma_{\rm p}$, where $$\Gamma_{p} = P \tau_{p}^{2} / h \tag{13}$$ in units of Planck's, constant II.4 On The Figure of Merit (FM), FM is proposed and cast in a manner to quantitatively describe the propagation process of digital optical signal in nonlinear dispersive medium (waveguide) in an integral way. It couples the merit of relevant topics namely i) the transmitted bit-rate, ii) the confinement factor and iii) the power-pulse-width square. FM is given as $$FM = (B_r / F_t). \Gamma / (P \tau_p^2 / h)$$ Based on this criterion, a better propagation process acquires FM of higher value and vise-versa. ## III. RESULTS AND DISCUSSION Two optical waveguides are taken into consideration when dealing with the variations of FM against the variations of different sets of the affecting parameters namely Germania-doped fibers (GeO₂ + SiO₂) and Al-doped GaAs. The software that designed to handle the model, employing the set of parameters, compute the confinement factor, Eq. (1), then the transmitted bit rate, Eq. (9), and finally the power-pulse-width square, Eq. (12). Then the computed items are cast in Eq. (13) to calculate FM. Two additional criteria are introduced to study the quality of the propagation process namely four factor formula-figure of merit FM_4 and modified figure of Merit FM_m where $$FM_4 = (\frac{B_r}{F_t}) \cdot (\frac{B_r}{B_m}) \cdot \Gamma \cdot (\frac{h}{P \tau_p^2})$$ and $$F M_{m} = (\frac{B_{r}}{B_{m}}) \cdot \Gamma \cdot (\frac{h}{P} \tau_{p}^{2})$$ (14) The model is processed through the following set of data $0 \le x \ge 0.4, 0.5 \le d, \mu m \le 1.5, 2 \le \tau_o, P. sec \le 1.0 \le \lambda, \mu m \le 1.6, 200 \le T, ^{\circ}K \le 400, 5 \le \Delta\lambda, nm \le 50, P_i = 2.5 \times 10^4 \text{ Watt/m}^2. n_2 = 10^{-9} \text{ m}^2/\text{V}^2, \text{ and } \sigma_m = 4 \text{ dB}.$ Two combinations of special interest of optical source and detector are processed namely: - i. combination made of LED with ($\Delta\lambda$ =50 nm) and APD where B_u = 1.58x10¹¹ bit/sec., and ii combination made of LD($\Delta\lambda$ =5 nm) and APD where B_u - ii combination made of LD($\Delta\lambda$ =5 nm) and APD where B_u =6.31x10¹¹ bit/sec. Special emphasis is given to two windows of the optical frequencies namely 1.33 μm and 1.55 μm . The first window is at dispersion-free zone; while the second window is at minimum spectral loss domain. The variations of FM_4 against the variations of one or more of the affecting parameters are displayed in Figures (1-6). Based on these figures the following general remarks are made without loss of generality: - i- FM4 and d are negatively correlated - ii- As T increases FM4 increases - iii- FM₄ of GaAs guide is of higher values compared to GeO₂-doped silica guides. - iv- As x increases FM4 increases. Figure 1. Variation of F_4 with d for X=0.1, $\lambda=1.55~\mu m$ and $P=25.10^3~W/m^2$ and different values of T for both AlGaAs and GeO_2 -Si O_2 (LED-APD). Figure 2. Variation of F_4 with d for X=0.2, $\lambda=1.55~\mu m$ and $P=25.10^3~W/m^2$ and different values of T for both AlGaAs and GeO_2 -SiO₂ (LED-APD). Figure 3. Variation of F_4 with d for X=0.1, $\lambda=1.33~\mu m$ and $P=25.10^3~W/m^2$ and different values of T for both AlGaAs and GeO_2 -SiO₂ (LED-APD). Figure 4. Variation of F_4 with d for X=0.2, $\lambda=1.33~\mu m$ and $P=25.10^3~W/m^2$ and different values of T for both AlGaAs and GeO_2 -SiO₂ (LED-APD). Figure 5. Variation of F_4 with d for different values of both λ and x for both AlGaAs and GeO_2 -SiO₂ (LD-APD). Figure 6. Variation of F_4 with d for different values of both λ and x for both AlGaAs and GeO_2 -SiO₂ (LD-APD). In general, the increase of FM₄ is due to the decrease of dispersion, the decrease of spectral loss, the increase of Γ , and the increase of $P\tau_p^2$. Without loss of generality, FM₄ and x are positively correlated as shown in Figures (7-10) where the same feature as above are clarified. As λ increases, FM₄ has the following variations as displayed in Figures (11,12). - For GaAs guide, FM₄ increases up to a maximum value, then FM₄ decreases. - ii- For GeO_2 -doped silica, FM_4 decreases down to a minimum value, the FM_4 increases. These two opposite situations are due to the opposite variation of Pr_p^2 against the variation of λ . The same sort of variations are found for the variations of FM₄ against the variations of T as portrayed in Figures (13-16), for the same reason as above. Figure 7. Variation of F_4 with x for $\lambda = 1.33 \mu m$, $d = 0.5 \mu u$ and $P = 25.10^3$ W/m² and different values of T for both AlGaAs and GeO_2 -SiO₂ (LED-APD). Figure 8. Variation of F_4 with x for $\lambda = 1.55 \mu m$, $d = 0.5 \mu m$ and $P = 25.10^3 \text{ W/m}^2$ and different values of T for both AlGaAs and GeO_2 -Si O_2 (LED-APD). Figure 9. Variation of F_4 with x for $\lambda = 1.33$ μm , $d = 0.5 \mu m$ and $P = 25.10^3$ W/m² and different values of T for both AlGaAs and GeO_2 -SiO₂ (LD-APD). Figure 10. Variation of F_4 with x for $\lambda = 1.55 \mu m$, $d = 0.5 \mu m$ and $P = 25.10^3$ W/m² and different values of T for both AlGaAs and GeO_2 -SiO₂ (LD-APD). Figure 11. Variation of F_4 with λ for $T=300^{\circ}K$, d=0.5 μm and $P=25.10^3$ W/m² and different values of T for both AlGaAs and GeO₂-SiO₂ (LD-APD). Figure 12. Variation of F_4 with λ for $T=300^{\circ}K$, d=0.5 μm and $P=25.10^3$ W/m² and different values of T for both AlGaAs and GeO₂-SiO₂ (LED-APD). Figure 13. Variation of F_4 with T for $\lambda = 1.55 \mu m$, $d=0.5 \mu m$ and $P=25.10^3$ W/m² and different values of T for both AlGaAs and GeO_2 -SiO₂ (LED-APD). Figure 14. Variation of F_4 with T for $\lambda = 1.33 \mu m$, $d = 0.5 \mu m$ and $P = 25.10^3 \text{ W/m}^2$ and different values of x for both AlGaAs and GeO_2 -SiO₂ (LED-APD). Figure 15. Variation of F_4 with T for $\lambda = 1.55 \mu m$, $d=0.5 \mu m$ and $P=25.10^3$ W/m² and different values of T for both AlGaAs and GeO₂-SiO₂ (LD-APD). Figure 16. Variation of F_4 with T for $\lambda = 1.33 \mu m$, $d=0.5 \mu m$ and $P=25.10^3$ W/m² and different values of T for both AlGaAs and GeO_2 -SiO₂ (LD-APD). #### IV. CONCLUSIONS The figure of merit is an integrated criterion which couples three of four basis ratios relevant to the propagation problem through the optical guide. In general, there is no monotonic portrait for the variations of it against the variations of the set of affecting parameters. The figure of merit and ratio are negatively correlated while it has positive correlation with other ratios. It is found that some of the affecting parameters yield gains when dealing with some of the basic ratios; while the other yield loss for the other ratios. ### REFERENCES - A. Hasegawa and F.Tappert, "Transmission of Stationary Optical Pulses in Dispersive Dielectric Fiber," Appl. Phys. Lett, Vol.23, p. 142, 1973 - [2] M. Jain and N. Tzoar, "Propagation of Nonlinear Optical Pulses in Inhomogeneous Media," J Appl. Phys., Vol. 49, No. 9, pp. 4649-4654, Sep. 1978. - [3] A. Hasegawa and Y. Kodama, "Signal Transmission by Optical Solitons in Monomode Fibers," Proc. IEEE, Vol. 69, No. 9, pp. 1145-1150, Sep. 1981. - [4] F. Z. El-Halafawy, E. A. El-Badawy, M. A. El-Gammal, and M. H. Aly, "On the Soliton Transmission in Nonlinear Inhomogeneous Graded-Refractive Index Media," *IEEE Tran. Inst. and Meas.*, Vol. 36, No.2, pp. 543-546, June 1987. - [5] A.S. Gouveia, A.S. Gomes, and J.R. Taylor, "Femtosecond Soliton Raman Generation," *IEEE J. Quantum Elect.*, Vol.24, No.2, pp. 332-340, Feb. 1988. - [6] A. Korped and P.P. Banerjee, "A Heuristic Guide to Nonlinear Dispersive Wave Equation and Soliton Type-Solutions," Proc. IEEE, Vol.72, pp.1169-1130, Sept. 1984. - [7] A.D. Boardman and P. Egan, "Optically Nonlinear Waves in Thin Films," *IEEE J. Quantum Elect.* Vol.QE-22, No.2, pp.319-324, Feb.1986. - [8] P.K. Mishra and A. Sharma, "Analysis of Single Mode Inhomogeneous Planar Waveguides," J. Lightwave Techn., Vol.LT-4, No.2, pp.204-211, Feb. 1986. - [9] A.A Abou-El-Enein, F.Z. El-Halafawy, and A.A.Saleh, "Confinement of Optical Pulses in Nonlinear Slab Waveguide," Alex. Eng. Jour. (AEJ), Vol. 30, No. 1, pp. B5-B11, Jan. 1991. - [10] J.W. Fleming, "Dispersion in GeO -SiO Glasses," Applied Optics, Vol.23, No. 24, pp. 4488-4493, 15 Dec. 1984. - [11] R.G. Hunsperger, Integrated Optics: Theory and Technology, 2nd. Ed., Springer Series in Optical Science, Springer-Velag, Germany, 1984. - [12] CSELT, Turin, Italy, Optical Fiber Communication, 1st. Ed., McGraw Hill, Inc., USA, Ch.II, Part IV, 1981. - [13] F.Z. El-halafawy, A.A.Abou-El-Enein, and A.A.S. "Maximization, of the Bit-Rate-Repeater Sp. Product in Local Area Networks (LAN'S)," A Confer. Modeling and Simulations, Cairo, E. Vol. 2a, pp. 3-21, March, 1987. - [14] A.A. Aboul-Enein, F.Z. El-Halafawy, El-S.A. Badawy, A.E. Mohammed, S.K. Moham "Transmission of Nonlinear Chirped Optical Puls GeO-Doped Fibers", *Alex. Eng. Jour. (AEG)*, vol. No. 4, pp. B 137-148, Oct. 1990.