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ABSTRACT

Adaptive inverse control is another motivation to adaptive control. An unknown plant will track an input command
signal if the plant is proceeded by a controller whose transfer function approximates the inverse of the plant transfer
function. In the adaptive inverse model proposed by Widrow [1,2,3], the controller is realized as an open loop
adaptive finite impulse response (FIR) filter which needs a large number of coefficients to approximate the plants
transfer function. This increases the computation time. Another controller structure is proposed by Ibrahim- [4].
In this case the controller structure is an open-loop infinite impulse response (IIR) filter which reduces the number
of coefficients and provide a good step response. This paper proposes a new feedback controller realization based
on inverse modeling IIR filter. This controller provides the performances of the closed loop system, such as: a-
direct pole assignment structure; b- low sensitivity of the performances due to parameters variation; c- facility of
noise reduction; d- set point adjustment. In addition to the important specifications of closed loop response over the
open loop one, a recursive least squares algorithm is used which is unbiased and fast algorithm in order to identify

the inverse filter parameters.

|- INTRODUCTION

There is a great need for learning control systems which
can adapt to the requirements of plants whose characteristics
may be unknown and/or changeable in unknown way. Two
principal factors have hampered the development of adaptive
controls, the difficulty of dealing with learning processes
embedded in feedback loops, and the difficulty in controlling
on-minimum phase plants.

In this paper we continue with the development of an
dlternative approach, which was first presented by Widrow
[1,2,3], and modified by Ibrahim [4]. This inverse model of
the unknown plant can be formed as shown in Figure (1).

The adaptive filter input is the plant output and the filter is
adapted to cause its output to be the best minimum error to
the delayed plant input. A close fit implies that the cascaded
of the unknown plant and the filter have a transfer function
of essentially unit value at least within the frequency band of
the input signal. The delay d accounts for the transportation
lag in the plant.

This paper proposes a modified scheme for such a purpose
where an IR filter is used with feedback structure from the
filter output instead of the open-loop case, stated in [4]. The
new technique has several advantages over those given in
[3,4] which in general are the advantages of the closed loop
performances:
¢ direct pole assignment structure;

b low sensitivity of the performances due to parameters
variation;

¢- facility of noise reduction;

d- set point adjustment.
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The publications [1-4] concern with inverse modeling
control use the least mean square (LMS) techniques which
in fact has a very slow convergence rate. In this paper, the
recursive least squares algorithm is used in order to identify
the inverse model parameters. This algorithm is unbiased
and has fast convergence.
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Figure 1. Adaptive inverse modeling.

[I- OPEN-IOOP ADAPTIVE CONTROL USING INVERSE
MODELING

The adaptive inverse control scheme is illustrated in Figure
(2). It is assumed that u excites the plant at an adequate
level so that adequate modeling can take place, a small
dither signal can be added to plant input. Feed-forward
controller is a copy of the inverse model and after the
parameters converge, the plant output will track the
reference command signal r, that is:
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Xp = Ing (€))

At the first time, the controlled scheme is realized by an

FIR filter whose weights are updated using the LMS
algorithm [3] as shown in Figure (2). A high-order filter has
to be used to approximate the inverse of the plant’s transfer
function. This requires a huge amount of computation.
Moreover, the delay between the output signal and the
reference command is large.
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Figure 2. Open loop inverse model self-tuning controller.

Recently, IIR algorithm have been proposed based on
different error minimization criteria [5-6]. In IIR structure
the system is modeled by a discrete transfer function. In
these types of filters the filter response is governed by a
number of feed-forward coefficients and another number of
feedback coefficients. This recursive structure results in pole
zero system. This type of models is well known as
autoregressive moving average (ARMA).

The control objective is to adapt the controller in such a
way that the response of cascaded controller and plant best
matches the reference model response. That is the following
cost function is minimized:

T = {cy - ¥} )

The open loop inverse modeling self tuning controller has
some drawbacks, which are mentioned in the introduction,
therefore the open loop self-tuning will be developed using
the feedback inverse modeling self tuning controller.

I- FEEDBACK
CONTROLLER

INVERSE MOELING (FBIM)

In order to avoid the drawbacks of the open-loop self-
tuning controller, it is necessary to use a feedback structure.
This structure is shown in Figure (3).
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Figure 3. Closed-loop inverse model self-tuning controlle,

The control objective for the system will require the outpul
y (1) to follow a reference signal r (t) in some predeterminei’
way and to reject random disturbances which nay corrupt the
output. In this formulation the objective of servo following
and disturbance regulation are combined. The pok
assignment design for this combined objective is organize
as follows.

Ayt =Bu(l) + Ce(t)
where:
A=ldapz! +.5 %0, 2"
B=b,+bz! +... +b,z™
C=1 +clz'l HESc z
where the controller is of the form [7]:-
Fu®)=Hr@®)-G1(t) )]

the polynomials F and G are given by:

F=l+flz'l+...

L. z™

I} +g“‘z'ng

where 0 is the delayed inverse plant model output. This
output can be obtained as a function o the system output &
follows:

G=g°+glz'l+

Ba@w=2z'Ay® by
Combining the controller, system equation and the inverst
model equation yield the closed loop description:

Alexandria Engineering Journal, Vol. 32, No. 2, April 1983



z*GBA+B A F)y(t)=z!BBr (t)+CF Be (t) (6)

when the tuning algorithm converges, A = A and B = B,
therefore equation (6) simplifies to:

AGz¥'+Fy®=BHr{t1)+CFe(t) (7)

The above equation can be rewritten in a transfer function
form:-

CE

—_——e(t) (8)
AF+z 4-1G)

Yz (b~ 1)
AF+z79-1G)

where H, is known as the copier transfer function, and h is
the system gain that conserves the value of the set point.

Equation (8) shows that if the system is excited by a noise
¢ (), the feedback system response will be stable if A is a
siable polynomial. The servo control problem is discussed in
the following section.

SERVO CONTROL

In this section we consider the case of a noise-free process,
therefore equation (8) can be rewritten as:

BH

S — (2 9)
A(F+z_d'lG)

y® =

The copier transfer function can be calculated as:-

A
H gl 10
1 B (10)

That is, this copier will have the same inverse model
Innsfer function of the system. The closed loop system poles
may be chosen as:-

W=F+z14G (11)
where
Wi = 1.0+ w; z! + Wy z2 4+ ... + wow Z2"M12)
where nw is the closed loop system order.

The gain h is calculated to conserve the desired set point
of the closed loop system, therefore h will be given by:
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h=1+w +w+ ...+ w,

From the algorithm it is shown that the closed loop inverse
modeling self tuning controller is a direct pole assignment
technique. This algorithm s simple and does not require
identity solution as illustrated in the known self-tuning
controller using parallel model [7,8]. The feedback inverse
modeling self-tuning structure is shown in Figure (3).

IV- PARAMETER IDENTIFICATION

In what follows er show that the inverse model can be
identified using the ordinary recursive least squares
algorithm. The system to be controlled must be regular, i.e.,
the degree of the denominator must be greater than the
nominator. Then, if the system model is inverted, the
denominator becomes a numerator and the numerator
becomes denominator, then the inverse model becomes
irregular. So the inverse model parameters are impossible to
be identified. The above problem can be solved by shifting
back the input of the inverse model many times until the
system becomes regular. The shift of the input is equivalent
to adding a pole at the origin of the inverse model. Consider
the block diagram shown in Figure (4), where the system
transfer function is denoted by A/B and the output is y. Now
if we consider that the ideal model output is denoted by C|
then the error e (t) will be given by:

e(t) = y(t) - c, (13)

The output y (t) can be calculated by the following
relationship:

y (1) = oM 6 + e®) (14)

where the vector 6 is given by:
6 =[a;ay...a; b b ... b ] (15)
e = [-y(t-1)-y(t-2)...y(t-n); u(t) u(t-1)...ut-m)]  (16)
Then the parameters of the inverse model of the system can
be identified using the recursive least squares algorithm
(RLS). This can be achieved if the following criterion is

minimized:

Q= |ew | an

Then the pseudo linear regression algorithm is then given
by:

6 =6(t-1)+K(t)e(t) (18)
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K(t) = P(t) ¢T(t) [1+¢(t) P(t) ¢T (t)]! (19)

P(t+1) = P(t) -K(t) [1 + ¢(t) P(t) oT()]"' KT (1) (20)
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Figure 4. Parameter 1dentification.

The recursive least squares algorithm is better than the
least mean square algorithm in the convergence time an the
obtained parameters are more correct and unbiased.

RESULTS

In order to examine the feedback inverse modeling self-
tuning controller, a second order example have been chosen.
The chosen example has two poles and one zero in the s-
domain, and is given by:-

y(s) _  s+0.2
us) $240.28+1

The step response of the system is shown in Figure (5). It
is clear from the system time response that the system is
very slow.

The proposed algorithm is applied to the system by
considering the following:

- choosing a time delay (d) equals 2 samples

- the closed loop system has three stable poles z; z,, and

Z

- the polynomial F 1s chosen as second order

the polynomial G is chosen as a gain

Flgure (6) shows the step closed-loop system response for
a three stable poles chosen arbitrarily. From the system
response one depicts that when the magnitude of the poles
are changed the overshoot and the rise time are modified. In
general the studied cases indicate that:

- The algorithm is asymptotically stable.

- The closed loop system response is modified by changing

the value of the desired poles

- The algorithm has fast convergence.
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Figure 5. Open loop system response.
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Figure 6. Closed loop system response.
CONCLUSION

The adaptive control algorithm based on open-loop inverse
modeling has several drawbacks. The major drawback arises
from the realization of adaptive model in open-loop
structures. The corresponding system performances are bad.

In this paper, these problems are avoided by using the
closed loop inverse modeling self-tuning controller. The
proposed algorithm has many advantages over the pole
assignment self-tuning controller using parallel model is that
the pole assignment in the inverse modeling is direct,
wherease the pole assignment 1n the parallel model needs to
solve an identity.

The recursive least squares algorithm is better than the
least mean square algorithm in the convergence time and the
obtained parameters are more correct and unbiased.
Therefore the RLS algorithm is modified in order to identify
the inverse model parameters.
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The given results show that the algorithm has fast
convergence.
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