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ABSTRACT

von Karman equations are used to represent the behavior of thin rectangular glass plates subjected to lateral
pressures. A previously reported model that used a finite difference method solved the glass plate problem assuming
the edges to be resting on elastic transitional springs acting in the out-of-plane direction. The plate edges were
assumed to be free to rotate in the lateral direction. Here, this model is modified to include condition where the
plate is also elastically restrained against rotation along its boundaries in the lateral direction. It is found that these
bending restraints have a significant effect on the behavior of the plate and that the number of iterations required

in the solution process are reduced by using this condition.

INTRODUCTION

The pioneers of the analysis of thin plates were Cauchy,
Poisson, Navier, and Kirchoff [1]. The research done by
these pioneers as early as the 1800s is significant and most
of the analysis done by them is still used in engineering
analysis.

When the lateral displacement of the plate increases more
than its thickness, the linear theories are not useful.
Membrane stresses are developed in the plate in addition to
bending stresses. To account for these membrane stresses,
a nonlinear plate theory was developed in 1910 by von
Karman [1] for the analysis of thin plates subjected to lateral
pressures. Since the resulting field equations are nonlinear,
there are no closed form solutions available to solve these
equations. Al-Tayyib [2] and Tsai and Stewart [3] used the
finite element method to solve this problem. Vallabhan [4]
solved the nonlinear flat plate problem using a finite
difference oriented method that employs an efficient iterative
technique.

The investigators listed above, used simply supported
boundary conditions in the solution of the problem. Wang
[5] presented a model where the plate edges were assumed
fo be resting on elastic transitional springs acting in the out-
of-plane direction. The plate edges were assumed to be free
forotate in the lateral direction. He concluded that the effect
of these springs is small and localized at the plate corners.
In reality, glass plates are supported by neoprene gaskets or
sealants that offer not only elastic out-of-plane restraints but
also, elastic bending restraints to the plate edges (see Figure
(1)). Small bending restraints on the plate edges can affect
the magnitudes and locations of maximum stresses in the
glass plate. Thus, consideration of the properties of these
elastic supports is important to the analysis of glass plates.
This paper swmmarizes the development of a finite
difference model for thin rectangular glass plates that are
supported by elastic gaskets or sealants on their boundaries.

Elastic out-of-plane and bending restraints are assumed to be

offered by these supports.
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Figure 1. a) Window Glass Plate Fastened in a Rigid
Framing System using Rubber-Like Gaskets. b) Sketch
Showing One Quarter of the Plate.

THE MATHEMATICAL MODEL

The governing differential equations and boundary
conditions for a thin rectangular glass plate subjected to
lateral pressure and resting on elastic supports that offer out-
of-plane and bending restraints are as follows [1] [6]:

Dv*w =g+t L(w,F) (1)
‘4 E
and v'F = -?L(w,w) )
where:
D = EP/12(1-?) = flexural rigidity of the plate;
w = the lateral displacement of the middle
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surface of the plate;
= Airy’s stress function;
lateral pressure;
thickness of plate;
Young’s modules of elasticity of the plate;
Poisson’s ratio;
biharmonic operator;

I

]

qu try R Ny
Il

and L(w, F)=w,,F, -2w,F, +w, F,_»

From this expression L(w, w) can be obtained by substituting
w for F. The subscript "comma" notation represents
differentiation with respect to the variables following it. The
Airy’s stress function F represents the membrane stresses [7]
such that:

a;'=F,”; o;=F,n; 1:,':'_‘,=—F,xy 3)

The moment resultants per unit length of the coordinate axes
are given by M, , My , and Mxy and are expressed as:

Ml =-D(w, + vw,”); M’ = —D(w,” + VW)

Mxy = D(l - V)W,xy (4)

The bending stresses are:

i (5)

Q

I
H
=
I

o, = + 62 ©)

Toy = & 622 0

The boundary conditions for a plate resting on supports,
which offer elastic out-of-plane and moment restraints are as
follows (only one quarter of the plate is considered because
of symmetry - see Figure (1-b)):

At x = a/2:
Toy=-Fopy = 0 (8)

=F, =0 ©)

C 96

Dlw,_. + (2 -v)w,m] = wk (10)
and D(w,, + vw,”) =w, K, (1)
Atx = 0:
W, =0 (symmetry) (1))
Aty = b/2:
th=-F,=0 (13
o, =F,_ =0 (14
D[w,m + (2-v)w,m] = wk, (15
and D(w,” + VW, ) = w,,K_ (16)
Aty = 0:
Wiy = 0 (symmetry) (17) '
where

K, = Spring constant of the elastic yielding support.
K, = Spring constant of the elastic bending restraints.

Equs. (10) and (15) represent the conditions of elastically
yielding supports. Equs. (11) and (16) represent the |
conditions of elastic moment restraints.

SOLUTION TECHNIQUE

The basic methodology used here is an extension to the
model developed by Wang [5]. The major development in
this model lies in the incorporation of the elastic bending
restraints along the elastically supported edges.

The finite difference operator v*, which applies to all
interior nodes that are at least two nodes away from the
boundary, is shown for convenience of the readers in
Appendix I, Figure (9). For any node close to or on the
boundary, all boundary conditions are incorporated along
with the main field equation. The molecules for these nodes
are developed using two fictitious nodes outside the domain
of the plate. For the molecules near and on the boundary,
the boundary conditions indicated by Equs. (11) and (16) are
enforced. For all the molecules on the boundary, an
additional boundary condition is enforced: The Kirchoff
shear forces are set equal to the elastic yielding support
constant K, times the deflection w at that node. The
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molecules for all points close to or on the boundary are
stown in Appendix I, Figures (9) to (17).

Using these finite difference equations the two nonlinear
plate equations given in Equs. (1) and (2), are replaced by
two sets of algebraic equations: one for the lateral defections
ud the other for the Airy’s stress functions. Both of them
ire defined at discrete points in the domain of the plate.
Consequently, the problem of solving the nonlinear
iifferential equations have been transformed into the solution
of two sets of nonlinear simultaneous equations as shown:

[Al{w} = {g} + { fi(w, F)} (18)

and [BIF} = {f,(w)} (19)
in which matrices [A] and [B] = equivalent biharmonic
operators; {w}, {g}, and {F} = vectors representing the
displacements, loads, and values of the stress function F at
the discrete points, and {f,} and {f,} are nonlinear functions
representing part of the right hand- side of Equ. (1) and the
nght hand side of Equ. (2); respectively. Since the
biharmonic operator is linear, both equations on the left hand
side are linear, and represented by matrices [A] and [B].
Both matrices are symmetric and positive definite, and so
tiey are formed in the computer code as half banded
matrices for computational efficiency. An efficient iterative
dlgorithm as given by Vallabhan [4] is employed here.

ITERATIVE SCHEME

Using values of {w'} and {F} obtained from the ith
iteration, the function f| is calculated numerically. For the
i+1) ™ iteration

[ATw"Y = {g} + {f,w', F))} = (R} (20)

Solving for {w'*!} and substituting in Equ. (21) for fr we
have: :

[BXF"1} = {f,(w"!)} = (R,} 1)

ud solving Equ. (21), we get {F*!}. It is experienced that

e aforementioned iterative scheme will not converge as .
deflections become large. In order to obtain converging

solution, both the deflection and the stress function were ¢
nterpolated using two interpolating parameters a and: §,

such that

o1 -a)ywivawt! . (22)

ad F*l=(1-g)Fi+gFi*! (23)
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The under relaxation parameter o varies nonlinearly with
(Wmax/0) while g is kept equal to 1/2. w,,,, = value of the
displacement of the center of plate. Thus, the equations to be
solved for the (i+ 1) iteration are rewritten as follows:

[Alwi))= (g} + (f,06', F')) ; 24)

and [BYF*Y} = {f,(w"")} (25)

The iteration is continued until the solution converges to a
final value for each increment of load such that, the error in
w for the (i+1)® iteration

N i+1 i
Z IW_,' i "

etl= 7 <y (W)™ (26)

in which N = the total number of nodes in the grid, where
v is a prescribed small positive number to represent the
iteration tolerance. In this analysis y was kept equal to
0.001.

ILLUSTRATIVE EXAMPLES

In this section we show the results of a sample thin glass
plate. The dimensions and properties of the plate are as
follows (see Figure (2)):

a =b = 60 in (152.4 cm);
t = 0.1875 in (0.48 cm);
E = 107 psi (6.9x107 kPa);

Size of the plate
Thickness of plate
Modules of elasticity

Poisson’s ratio yi=10:22
4} Plate Corner
30
g 20
i
=
T
P10
[ —
o 10 20 30
Plate Center x—Axis; in

Figure 2. Sketch Showing Plate Axes and Finite Difference
Grid; (Only One Quarter of the Plate is Shown).

& 97



KANDIL: Effect of Elastic Bending Restraints on the Behavior of Thin Glass Plates

The glass plate was subjected to a uniform lateral pressure
up to 0.64 psi (4.41 kPa) and was analyzed using grid size
15x15 for a quarter plate. A spring constant K, = 10%° psi
(6.9 x10'7 MPa) was used throughout this study. This value
of K, was shown by Wang [5] to represent rigsd supports
regarding out-of-plane deflection. Maximum deflections at
the plate center are plotted against the bending restraint
constant KA as shown in Figure (3).
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Figure 3. Effect of Bending Restraint Constant; K on
Maximum (Central) Deflection; (1 Ib = 4.45 N).

The maximum deflection of the plate evidently depends
upon the magnitude of K. It is seen that increasing K
decreases the maximum deflection. But, when K, is greater
than 10° Ib/rad (4.45x10° N/rad) the plate behaves as fixed
supported plate.

Figure (4) shows the variation of maximum (central)
deflection against the applied loads for different values of
K,,. It shown that for a value of K, = 10° Ib/rad (4.45x10°
N/rad) the deflection of the plate at ¢ = 0.64 psi (4.41 kPa)
reduces to 80% of the corresponding deflection of a simply
supported plate. For comparison the figure also includes the
results of Way for a plate with clamped edges, which are
reported in Ref [1, pp 421]. As can be seen, the deflection
given by Way is less than that given by the current analysis
for the case of K, = 10® Ib/rad (4.45 x 10 N/rad). The
main reason for this is the fact that Way used only three
terms in his expression for the deflection w. This limited
number of terms gives less degrees of freedom for the
deflection of the plate, and hence, yields a stiffer solution
than the current solution. He also assumed that the plate is
constrained from pulling-in in its plane along the boundaries
(i.e., fully clamped edges); however in the present analysis
it is assumed that the plate is free to pull-in in its plane
along the boundaries.
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Figure 4. Maximum (Central) Deflection Versus Appli
Pressure for Different Values of K ; (1 psi = 6.9kPa;
11b =445 N).

Figure (5) illustrates the deflection of the plate alongi
central line (see Figure (2)) for different values of K a
at a load pressure = 0.64 psi (4.41 kPa). As can be set
from this figure, the slope of the deflection curve at the pla
edge decreases with the increase of K. At K, = 10* Ib/n
(4.45x10* N/rad) the slope approaches that of a fix
supported plate. The curve shows clearly the reduction oft
plate deflection with the increase of K .

Figure (6) shows the variation of the edge moment alon
the plate edge at ¢ = 0.64 psi (4.41 kPa) with the increx
in the value of K. As can be seen from this figure t
degree of nonlinearty in the edge moment along the pla
edge increases with the increase of K. It is also seen th
for higher values of K, although the edge moment increas
with the increase of K, at most of the plate edge it decreas
when we approach the plate corer.
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Figure 5. Effect of K on plate deflection at 0.64
pressure; (1 Ib = 445 N; 1 in = 2.54 cm).
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tolerance of 0.001. As can be seen from this table, and with

?m_ —— Kem0.E3 W/red.  _ _ Ka=0.1ES M/red. the exception of cases 1 and 2 where the plate is subjected
Sl —mamnme e /e to very small pressures, the number of iterations decrease
87 ] ST with the increase of the value of K. This can be explained
3" A o by the fact that as the value of K, increases the plate
g %5 I e _becomes more constrained and hence the number of degrees
. . of freedom become less.

T SR T T, ‘CONCLUSIONS

Dilhnce .Iong (x = 30 in) axis; in

. The following conclusions are reached from the finite
figure 6 Effect of Km 01:1 edge moment at 0.64 psi -difference model for the nonlinear analysis of glass plates
QP11 5 445N, Lin % 2.54 an). % resting on elastic suppons which offer both rotational and

Figure (7) shows the variation of the edge moment at . : ouj-ofplape snetinn

K,=10® Ib/rad (4.45 x10® N/rad) due to increasing ‘¢
pressures. As would be expected, the edge moment increases g
with the increase of the applied pressure, however this
increase is not linear as would be predicted by linear
solutions.

-

SR ( i§ shown that the finite difference’ model presented in
this study can be a useful model to calculate nonlinear
stresses and deformations of thin rectangular plates
resting on elastic supports.

2- The maximum principal tensile stress decreases rapidly
with the increase of the value of the spring constant of
the bending restraints (K).

: -With the increase in the value of K, The area of the
— Presswre = 038 pat _  <i-- Prete 5080 pm : maximum principal tensile stress increases and moves

§ D e MG - inward towards the plate center.

o= SRy : 4- For K, = 10° Ib/rad (4.45 x 10° N/rad) the maximum

S s - deflection at pressure = 0.64 psi (4. 41 kPa) reduces to

e : Q. 80% of the corresponding deflection of a simply

st o “supported plate 60x60x0.1875 in (152.4x152.4x0.48

] i _em).

o l;";“n“":'h; '(-;:°'=' £ o'-';;') 0SS The difference of changes in K, on plate stresses and

i defonmnons is negligible for values of K exceeding

' about 10° Ib/rad (4.45x10° N/rad) for the above

menuoned glass plate.

The number of iterations required in the numerical

The effects of changes in the bending stiffness K, on the sghm_qn decrease with the increase in the value of K.

principal stresses under lateral pressure of 0.64 psi (4.41

kPa) are reported in Figure (8). Contour lines for maximum

principal stress for K, = 0.0 ; 102 ; 10° ; and 10® Ib/rad ACKNOWLEDGMENTS

are presented in Figures. (8-a to 8-d). Also maximum

principal tensile stresses are summarized in Table (1). It was The research described in this paper was performed in the

found that as the glass plate becomes more constrained, the Civil Engineering Department at Texas Tech University

maximum principal tensile stress decreases rapidly. Also, between November, 1991 and April 1992. The financial

with the increase of K, the area of the maximum principal support received from the Egyptian Government and the

tensile stress is increased and moves inward towards the USA through the Peace Fellowship Program is gratefully

plate center (see Figure 8). _ " acknowledge. The writer wishes to thank Prof. C.V.G.
. ' ~ 'Vallabhan of Texas Tech University for his helpful

Table 2 reports the number of iterations required in the suggestions and constructive criticism.
- numerical solution to achieve convergence at an iteration

8
w
'

Edge moment (lb.l'n/ln)

Figure 7. Effect of pressure on edgé moment at K, = 108
lbirad; ( 1-IB = 4.45 N; 1 psi = 6.9 kPa).
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Figure 8: Effect of bending stiffness K,;, on maximum principal stresses at pressure = 0.64 psi (principal stresses are in
ksi); (1 in = 2.54 cm; 1 psi = 6.9 kPa; 1 Ib = 4.45 N). (a) K, = 0; ® K, = 10 Ib/rad; (c) K, = 10° Ib/rad,
@) Ky, = 10 Ib/rad.
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APPENDIX I. FINITE DIFFERENCE MOLECULES

Q @ E.
gl

‘4 253
v'w,, = shown Molecule = -EQU‘TVU

Figure 12. Finite difference molecule for
v* atx =af2(near the corner).

L

v‘wu = slwwn Molecule = L'D:qu

Figure 9. Finite difference molecule forv* for all interior ' i

nodes. :
O OE-G

° [ = o =
® - T
3 U
|

SAESE T

4 3
2 E, E, vw, j = Shown Molecule = %qu-v 2‘;: Yy
1 L Figure 13. Finite difference molecule for v*aty = bf2 (near
y the corner).

B shownukculesh‘ +2h’V
"ia @ pW*tTp T

Figure 10. Finite difference molecule for v* at the edge
x=af2.

En
e
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‘w,; = shown Moleqde ey
A 20k’ : )
viw, = shown Molecule = 3"0*“TVU Figure 14. Finite difference molecule for v* near the edge
G x=af2.
Figure 11. Finite difference molecule for v* at the edge
y=b2.
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h‘
v‘wu = shown Molecule = %

Figure 15. Finite difference molecule for v*near the

edgey=5b/2.

hl

vw,, = shown Molecule = 29

Figure 16. Finite difference molecule for v* near plate

edges.

h‘
D

3
v‘w,_, = shown Molecule = quo%-(loa)vut

the plate.

dak?
D(1-v)

Figure 17. Finite difference molecule forv*at the corner of

In the above Figures (Figures (9-17)) we have:
C =6+8a’+6a’, C,=-4-4q?

C,=2a?, C,=-4a*-4a*
E|=C-2B;(2+4ra?+3»2a*),
E,=2(B,-3)-2a%[4-v(1+B,)],
Ey=a’[4-»(1+B;)], E,=C,+4»a’B,B,,
Es=a*(1-42B)),
Eg=-8a%-2a%(3-B)+2ra¥(1+B,)
E;=C -2a’By(2a*+4va?+3,?),
E8=C2+4va232812

Eg=1-»2a’B,, Ep=a’[4-»(1+B,)]
Ey)=E,-EgBgBs, Ey;=E4-EsB,Bsla
Eyy=Ey-EgByBs/a, E\4=Ey-EqByBs
E\s=Ey-EgBioBs, Eg=Eg-a’EgByB
Ey7=C, -8, Eig=Cy-va’B,
Eg=G-2BB);, Ey=C-a*B,
Ey=C-va®By),  Ep=C+20*B,B),

Ey = Exy-By, Ey=E) -ra’B

Eys=Ci-2v*a*(a’B, +B)) +2By(By By, +a B,B,, )
= R AT 2 2
Eyg=-8a”-6a*+2rva (1+2B,By,) +2a“Bs(Bg B, -

Eyy=-6-8a’+2va’(1+2B,By,) +2B(ByB,, +a B,

Ejy=8a’-va?(4+2B;+2B,)
Where:

a = h/k = aspect ratio of the finite difference grid.

Vi,j * _Kv w;

1 Rij =2D(1=r)(w,..);
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3, =-K,h/(2D), B, =1/(1-B,)

b =1/(a’*-aB,), By =(1+B,)B,

B =(a’+aB,)B,, Bs =1/[v*a-(1-B,)a -B,)]
b =v’a -(a +B,)X(1-B,),

B =2a%(1-»%)-2B,(» +a?)

B =2vB,, By =v%a -(1+B,)(a -B,)
By =20 (1-»2)-2B,(1+ra?),

2

B, =l+ra

B, =al+y
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