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ABSTRACT

Design of cross bracing members is a common practice for most of the steel structures. Many designers depend on
the tension member to resist the full acting load and neglect the existence of the compression member. This
procedure changes the indeterminate problem of the bracing cell into a determinate one in which the effect of the
areas of members on the force path is not a governing criterion and the lateral stiffness provided by the tension
member to the mid-point of the compression one is not considered or existed. In the present study the effect of all
member areas is accounted for, the stiffness offered by the tension member at the mid-point of the compression one
is considered, and the bracing cell is analized as it exists in the real system.

INTRODUCTION

The bracing cell, shown in Figure (1), is widely used in
steel structures to resist laterally acting forces. A common
practice used is to neglect the existence of the compression
member, this changes the system into a statically determinate
one. The tension member is designed to resist the full effect
of the acting lateral force and the compression member is
wcaled as the designed tension ane.
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Figure 1. A bracing cell subjected to a lateral force. (P).

In the original system, both the tension and the
compression diagonals are acting together along with the
other three elements in resisting the lateral force. In the
bracing system, the slenderness ratio of the compression
member, and also of the tension one, is generally high.
Therefore, it is possible that the compression member may
practice a case of elastic buckling due to the existing
comperssive stresses. Although the system is designed
neglecting the compression member, the appearance of the
structure will look like it has a serious problems if it buckles
and the tension member will suffer a case of an unaccounted
for bending or torsional moments based on the mode of
buckling of the compression element. This additional
moments may easily cause the tension member to practice
unsafe stresses.
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The analysis and design of the real structural system will
lead to a safe, economical, serviceable, and a stable looking
bracing cell.

TENSION DIAGONAL

Consider a tension diagonal, as shown in figure (2),
subjected to a tensile force , T, and to a lateral load, Q.
The member is assumed prismatic with length, L, and
having a moment of inertia, I, and a modulus of elasticity,
E.

y
Figure 2. A tension diagonal subjected to a transversal
laad (Q).

The differential equation of deflection is:

dy Ty __ Qx "
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Let @ = (T/EI)!2, then equation (1) may be expressed as:
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The general solution for equation (2) is:

y = A sinh(a x) +Bcosh(a x) + 2_Qf x 3)
The boundary conditions to get the constants A and B are:

These boundary conditions lead to the solution of the
equation which is:

T e @)

At mid-length the maximum deflection will be:

o tanh(azL)
s [l = 5
Yomax = = i X, ©)
E
Using this maximum deflection, the lateral stiffness (Ky) of
the tensile member is driven as:
aL
e e

The stiffness of a member subjected to a mid transversal
load as shown in figure (3) is determined as:
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Using equations (6) and (7), the lateral stiffness ratio R; will
be:
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Equation (8) may be expressed using the tensile stress ,f,,
the modulus of elasticity ,E, and the slenderness ratio ,L/r,
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Equation (9) proves the logical behaviour of increasing th
lateral stiffness ratio, R,, with the increase of the slendernes
ratio, L/r, and the tensile stress, f;.
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Figure 3. A member subjected to a unit transversal load :
mid-length.

COMPRESSION DIAGONAL

Consider a compression diagonal, as shown in figure (4
subjected to a compressive force ,P, and constrained at mi
length by a spring with a stiffness ,K,. The member i
prismatic with length ,L, moment of inertia ,I, and
modulus of elasticity ,E.
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Figure 4. Compression diagonal constrained by a transvers:
spinning at mid-length.

The differential equation of deflection 1s:

X (10

2
¢y =P 5 (11

The general solution of equation (11) is:

F

=Asi B
y=Asin(#x)+Bcos(8x) + >p X

(12
The boundary conditions to get A and B are:
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These boundary conditions lead to the solution of the
equation which is:

Fx _ Fsin(@x)

% " 24P cos(EL (13)
At mid length the maximum deflection ‘will be:
FL tan(ﬁZL
1- 14
Ymax = P [ e ) —_— (14)
2

Using this maximum deflection, the lateral stiffness (K;) of
the compression member may be driven as:
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Where k is the effective length factor of the member.
Equation (15) coincides with the results driven by Mutton
and Trahair [1].

Using equation (14) to get the brace stiffness ratio (K,/K,)
leads to:
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Figure (5) shows the relation between the inverse of the
effective length factor (1/K) and the brace stiffness ratio
(K;/K,). It is shown in figure (5) that the brace suffness
factor needed for a second mode buckling is K,/K, = /3
and that the effective length factor (k) may be approxnmated
!

3K, 17

Using the expression of the effective length factor given by
equation (17) and Euler buckling stress [2] which is:
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r

f =
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(18)

leads to the following relation between the buckling

stress,f_., and the brace stiffness ratio (K{/K,):
2
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Figure 5. Relation (1/k) and (.Ef)
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For a compatible bracing cell, the lateral stiffness ratio
(K1/K,) must equal the brace stiffness ratio (K/K).

Using equations (9), (16), and (19) leads to an expression,
for the buckling stress ,f.,, the slenderness ratio ,L/r, and
the modulus of elasticity ,E, which is:.
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Equation (16) gives as shown in figure (5) a critical value of
K,/K, which is #2/3 at which the compression diagonal will
buckle at the second mode of buckling. This value of K /K,
when used with equation (20) leads to a constant ratio
between f_, and f, to cause a second mode of buckling which
is:
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f, 2 0.5935 f,, @2n

This expression is different than that driven by Wang and
Bors1 [3] which i1s f = 0.6388 f. and is close to that
introduced by Sritawat and Finch [4] which is f, = 0.6 f_,

CELL BEHAVIOUR

Consider a bracing cell as shown in figurc (6), the force
distribution may be dnven using the basic structural analysis
theories. The member forces can be computed and «, may
be given as:

sin’@  cos? 1 1
+ © BMELINEEE

Ay Ay Ay Ag

o=
sin’6  sin’d cos2d 1 | 1 1

+ + . s~ catgn. B e S

A Ay A3 Ay Ag Ag Ay

where A, is the cross sectional area of the " member.
The ratio between the tensile and the compressive forces of
the two cross diagonals s

T . 1% 23
€ (23)

Equation (23) when used with equation (2!) gives a
condition relating the geometrical properties, the distribution
of areas and the controlling mode of buckling for the
compression diagonal. This condition is that the second
mode of buckling 1s governed under the following condition:

a < 0.6275 (24)

When equation (24) is satisfied the elastic buckling load is
increased by a considerable amount which will increase the
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overall capacity of the bracing cell and the compression =
diagonal will sustain a major part of the acting force.
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Figure§ A typical bracing cell.

CONCLUSION

The use of X- bracing is of great importance i1 the design
of steel structures. Critena are formulated tor the gencral
case where the tension and compression braces may have
different areas. Results of this study are compared with other
solutions. The overall capacity of the bracin: cell may be
increased considerably by increasing the load carrying
capacity of the compression diagonal and the bending ngidity
of the tension diagonal.
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