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Based on the state variable feedback and pole assignment concepts, an algorithmic procedure for controllers design
with prespecified imposed constraints is presented. The procedure is applied to the steering control of ships
overriding the problem of avoiding the state estimator for non-measurable states. Besides, a numerical illustration
has been executed by the MATLAB to compute the transient responses of both the open and feedback control loops.

INTRODUCTION

The conventional method for improving system
performance by compensating techniques is replaced in
modern control theories by the state variable feedback
concept. Compensated system requires feedback of only one
variable, the output. Of course, in systems compensated
through inner feedback loop, more than one dynamic
variables are feedback[1].

State variable feedback explores a technique that uses
information about all the system’s state variables to modify
either the control signal or the actuating signal. The former
isa version of internal feedback compensation relative to the
outer-control loop.

Both forms require all the state variables to be measurable
or at least derivable from other information by state
reconstructors.

State variable feedback technique is advantageous from the
point of view that instrumentation costs may be less
expensive than the cost of implementing a complex control
algorithm or adding extra actuators.

If so, it would be more economical to measure all the state
variables and to use this information to reduce the
controller’s complexity. In such a case, P-control can be
substituted for PD-control if the state variable corresponding
to rate is measured.

In addition to cost consideration, the state variable

feedback offers significant improvement in performance
because the state variables contain a complete description of
the plant’s dynamics. Moreover, with state variable feedback
a better chance of placing the characteristic roots of the
closed-loop system in locations that will give desirable
performance [2].

The pole assignment problem under constraints was studied
by some researchers. A reduced order system with the set of
unassigned poles satisfying the constrained conditions may
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be obtained by removing the characteristic polynomial with
the set of assigned poles. This method simplifies the design
procedures, whereas the root locus method may be adopted

-for the proper fixation of the feedback gain(3, 4].

In what concerns the problem of ship dynamics and
manoeuvreing, significant analysis, mathematical modelling
and numerical estimation of the forces, moments and
coefficients are presented in [5-8].

The objectives of this paper is to develop a design
procedure of the controller’s gain and feedback vector by
state feedback and pole assignment applied to the steering
control problem. Prespecified constraints are intentionally
imposed on the system to exclude building of state
estimators.

NOMENCLATURE

a Translation acceleration of C.G. of ship
perpendicular to velocity vector.

a Coefficients of the closed loop characteristic
polynomial, i = 1,2...,6

A nxn system matrix

b " control vector

B Ship’s breadth

cr Output vector

d Longitudinal distance between C.G. of ship and the

_ center of pressure; positive if forward of C.G.
D . Ship’s draft

e Voltage signal

F Propeller thrust

G(S) Forward path transfer function

Heq(S) Equivalent feedback transfer function

I Unit matrix

AllS



HANAFI and MOSLEH: Controller’s Design For Ship Steering

J Polar mass moment of inertia of ship about a
vertical axis through C.G. including added
moment of inertia due to yaw

K Controller’s gain

K, K, Parameters of the transfer function of the
hydraulic valve

¢ Transfer function of the variable stroke pump.

K3 Parameter of the rudder
cylinder

K, Kj . K3

Kep Hydrodynamic lateral force on rudder per unit
radian of rudder deflection.

Kp Total drag force on ship acting in the center
of pressure (C.P.)

K¢ Hydrodynamic damping torque coefficient on
ship for yawing

KL Hydraulic lateral force on ship per unit radian

of drift angle; acting in the center of pressure
Longitudinal distance between C.G. of ship
and point of action of hydrodynamic force on
rudder
Ship’s length
Mass of ship including added mass in sway
The order of control system
Controllability matrix
State feedback vector
Laplace operator
,T2,T3,T, Time constants of the ship dynamics
Input variable
Ship’s speed
Input reference
State variable vector
Output variable
drift angle
Poles of the
(On(8)/6,(5))
5, Rudder angle
Yaw (heading) angle
T Time constant of the hydraulic valve

g£<equryos g

Q‘<l’>\(
-

ship’s transfer function

MATHEMATICAL MODELLING

Consider a ship travelling at a constant speed V with the
rudder set to an angle §, the force and moments acting on
the ship together with the angles describing its orientation in
an inertial coordinate system are shown in Figure (1). The
ship executes in this case both translational and rotational
motion. Combined sway and yaw motions are considered,
since for linearized model the remaining motions, namely
surge, pitch, heave and roll are uncoupled from yaw and
sway motions.
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Figure 1. Coordinates, hydrodynamic forces and torques
acting on the ship.

Applying d’Alembert’s prnciple in the direction
perpendicular to the velocity vector[9], the differential
equation for sway is obtained as

ma-K; a -Fcos(90 -a) +Kg; 6 . =0 (N

Similarly, the yaw equation of motion is obtained by
applying d'Alembert’s principle for equilibrium of moments
about C.G. as

a6 dé
J—= Ky +Kp)da +Kep 18, -Ki—T @
ol cr bl -Ke—

Linearizing for small values of §, and o and transforming
into Laplace domain the transfer function of the yaw angle
becomes

0 (S) Koo mIVS+(Ky +Kp)d +
0:(S) SUmVs?+[J (K +F)+KmV]S +

*(KL*F)U

T 3
*Kf(KL*F)‘mV(KL*KD)d} ( )

According to [10,11], the following time constants were
defined as
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T =
= Ko B

(s)

JmV

Ko b )

T3=3

Ta i [Kf(KL +F) - mV(KL + KD)d] ®
Kcp-h

where
h = [(K. + Kp)d + (K| + F) ]

and the transfer function of the yaw angle ©,, becomes

6,.(S) T,S+1
= 4)

8:05) TIS(S+a,)(S +asy)
where

T[T, - 4T, T3

al,?.- 3 (5 )
2T;

and

g

Figure (2) represents the decomposed block diagram of
equation (4).

B

Figure 2. Decomposed block diagram of equation (4).

A suggested schematic electrohydraulic controller for ship
steering 1s indicated in Figure (3). The helm position is
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sensed by a linear variable differential transformer (LVDT),
which supplies an electrical signal to the input of the
transformer. The amplifier output drives the electrohydraulic
servo valve, which by using a cylinder, controls the stroke
of the variable displacement pump. The pump permits both
positive and negative stroke positions meaning that the output
flow can be reversed in direction. Fluid from the pump
enters one or the other of the two rudder cylinders, which
acting on the rudder arm, controls the rudder position. A
second LVDT senses the rudder position and provides the
primary feedback of the system. An additional LVDT
supplies pump stroke information to the amplifier, this
feedback is necessary to achieve absolute stability.

Figure 3. Closed-loop electrohydraulic controller for ship
steering.

The dynamic analysis of the electrohydraulic controller was
carried out and the final transfer functions are represented in
the block diagram shown in Figure (4) [9].

Lor Solenoid  Stroke Rudder

& & Cytinder Cylinder

wiﬁu Vaive

emd K e _.iL 9 Kl X K E) sr

74 [ i
LvoT
s
e
i oy I

et

Figure 4. Block diagram of the electrohydraulic controller.
In order to control the direction of the ship during steering,

a sensing gyro with gain K¢ is to be fed in the major
feedback of the automatic closed-loop of directional control.

A 117



HANAFI and MOSLEH: Controller’s Design For Ship Steering

The overall block diagram of the ship dynamics with
controller is indicated in Figure (5).

It is required to evaluate the controller’s gain K, the two
minor feedbacks of the LVDT'S (K4 and Ks) and the

gyroscopic gain Kg.

Gyro o . .
Figure 5. Overall block diagram of the ship dynamics and
controller.

Consider now the symbolic state variable feedback system
illustrated in Figure (6), which simulates the block diagram
indicated in Figure (5). The plant could be described by the
following state and output matrix equations, namely

&)

Controlier Plant
= _—{ “““““““““ ;
w u i
K | b X ’ X y

i e il + l

! h__ A f

I — e —

| i .

| SO b e b ...

Figure 6. Symbolic state variable feedback of the block
diagram in Figure (5).

Where, u represents the input voltage signal e and y
represents the output yaw angle of the ship ©,,.
Taking the laplace transform of equation (5) yields

X(S) = (SI - A)""b.u (9
and

Y(S) _¢ T.adj(SI - A).b  Ng(S)
Uugs) detST - A)  Dg(S)

{ ©

Where Ng(S) and D(S) represent the numerator and the
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denominator of the transfer function G(S) of the plant stated
1n equation (6) respectively.

In order to design the controller’s gain K and the stat
feedback vector r!, the controllability of the plant should be
first examined through the controllability matrix Q, where,

Q=bAbA%b....A"! b "

The controllability matrix (_2 should be non-singular, or
det (Q) # O
From Figure (6), it could be written that
u=Kw-rl.» ®

Where w represents the reference signal.
Substituting equation (8) into equation (5) and transforming
into Laplace domain, we get

X(S) =K[SL—@—K.Q.LT)]_1.§.W(S) ©

v© KCladfsi-a-KbDlp N© o

WO getfsi-a-kbgD] DO
Where, N.(s) and D_(S) are the numerator and

denominator polynomials of the closed-loop respectively.
Similarly, the control system can be represented in an
alternative way as shown in Figure (7).
From Figure (6). the feedback signal o(S) could be
expressed as

a(8)=rr.(SI-A)7! b.u(s) (11)

From Figure (7), it can be deduced that

o (s) _ rladi(SI-A).b
Y() T adj(SI-A).b

e Ny(s)

= (12
DH(S) )

Heq(S)=

and similarly;
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Y(S) _ K.G(S)
WS 1+ K.G(S). H (5

(13)

. K el 6 (90285
Og(s)

Ny(s)
"Q,(s)

Figure 7. Alternative block diagram of the control system
indicated in Figure (6).

H.q( s)

It should be noted that, the numerator of equation (6)
equals the denominator of equation (12), i.e. Ng(S) =
Dy(S). Hence, equation (13) is transformed into the form

ve) . KNg®  K.Ng(©)

_ = (14)
WE) Dg(®+K. Ny D,(5)

where, D (S) represents the characteristic polynomial of the
closed-loop system, i.e.

= defSI - (A - K.b.eD)]

=det(SI - A) + K.r".adj(SI - A).b (15)

or,

1 .
Nu(®)=¢ [Dc(s)-DG(s)]sﬂ.adj(Sl—A).h (16)

By pole assignment of the closed-loop control system D_(S)
could be determined. If the gain K could be evaluated, the
state feedback vector rT will be consequently computed[12).

In order to obtain the controller’s gain K, the final value
theorem with zero steady state error is applied to equation
(14), i.e.

_ K.Ng(®
Li =1
. =50 D

or,
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D.(s)
= . lim
$—>0 NG(S)

K a7

Referring to control system under discussion which is
indicated in Figure (5) and applying equation (5) to this
system yields.

X| foT/T; 0 e o 18 gl [ o |
X| |0 -a, 1/T,-a, 180/x O 0 x| o

Xy g 0 0 -a, 180/ O 0 |x, ‘ 0 e
x| o o 0 O K, e, 0

X| [0 © 0 0 0 K, |x, 0

X| o o 0 0 o0 -us [x] Kt

Y=6,=(100000)X

The determinant of the controllability matrix Q expressed
in equation (7) gives, B
Ll
T

Since a, # 1/T, this means that the controllability matrix
is non - singular, i.e. the system is already controllable.

The open-loop transfer function can be determined from
equation (6) as

3 389
[K1K2K3

j [1801(, K, K
| 7

l T 71,

det(Q)

180K, K, K,

Y(S)_Om(®) No®)_  7T3r
U(S) E(S) Dg(S) S3(S+al)(S+a2)(S+l/'r)

1
WL (S+
1( T])
(18)

Since the number of state variables is six, which equals the
degree of the characteristic polynomial of the closed-loop
control system it follows that we have to assign six poles in
order to get the controllers gain K(with the aid of equation
(17)), and the six values of the state feedbacks r', where,

11 = (1) 1 13 14 15 Tg)

In other words, the degree of freedom of assumptions here
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1s six. It is aimed to investigate the behaviour of the
automatic control system -with intentionally prespecified
constraints namely ommmg arbitrarily some elements of the
state feedback vector rT

The state X is non-measurable and it is intended to avoid
the state estimator, while instead of feeding back the state,
X, which is proportional to the rotational velocity of yaw, it
may be preferable to feedback the state X; by adopting a
sensing gyro for the yaw angle. In addition, let us igﬁom
also feeding back of the state Xg. To summarize, instead of
feeding back six states, three state variables when feedback
may be adequate and may meet the needs of time domain
specifications. It follows that three of the state feedbacks
namely r,,13 and rg should be nullified. The state feedback
vector consequently is reduced to

.

tT=( 00 ry, rg 0) (19

The absence of three of the state feedbacks r,, ry and rg
necessitates that assigning the six poles of the closed-loop
characteristic polynomial fails in this case, because it will
yield six feedbacks.

In order to override this difficulty, only three poles of the
characteristic equation have to be assigned together with the
three nullified state feedbacks (r,=r;=rg=0)

Let the characteristic polynomial be

Dc(s) =s$ +alSS +a254+3383 +a482+aSS +ag

According to equation (17), the controller’s gain K is given
by

1T31

" T80K, KK, © %

Applying equation (16) gives

180K, K, K
Ng(S)=——1 2 2 [(a - —az—.;.)SS "

™ T3 Ta6

a
2)S"+(a3 - I(:'2)83 +a482+a55 +ag]

Hay-ajay-
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K, K K;K
= lr 2r554+ l 2[(a1+a2)r5+K3r4]S3

KK
+ S108 [ayayrs ~*K_;(al+a—‘,)r4]S2
T [

E Kk
P ————

g

180 T,
a; a, ry + - _:‘rl S
T3
180K, K, K
+ _____13_2_2 T (21
w3 7

Equating the coefficients of S', i = 0,1,2,..:.,5 in both
sides of equation (21), the following relationships are
deduced

n =1 (22)
a
r RS - | ¥ ) 23)
a@)ay 1T; 8‘6
180K3 34
Ki(ayvax)ry vajaprg=——8 — 4)
T T3 a6
180K aa
K3r4+(01.+0'2)l’5= 3 FS— 11- 2 (25)
m T3 ag
180K3 a +az‘, ”
I = 3 a-a,a,- _J (26)
7 T3 ag
a, a+a-,+l 27
f T

It is obvious that the value of the state feedback r (the
gyroscopic gain Kg) is always unity irrespective of the
system parameters, i.e.

r1=K6:l
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Derive A, b, " matrices

|

Find Contollability Matrix @
dat (@)=(h A.b A7.p...A""* @)

= 0
sT0P

$0
Du(B) = det (S | - @

Ne (8) = CV.ads (S] -~ A).B

Assign m of the n poles-
Constraints are taken into
acccount (Nullify the required
state feedbacks)

i

Assume that thae characterietic
polynomial

D (S)=8n+a, 8™ teaa 8" ?+....
an-s S* an

2 3 (G+PIB(S™mefy Br= e, ..,
0 4f-m) *Rama i nder

&

Besides, 1t is worth mentioning that the coefficient a,
represents the megative sum of the poles of the open-loop
transfer functiop and equals the negative sum of the poles of
the ship dynamics plus the reciprocal of the time constant of
the hydraulic valve.

Eliminating both r and r¢ in equations (23) to (26), only
two equations in terms of the coefficients a;, j=2.3.....,6 are

The resulting two equations involve five unkmowns-the
coefficients a,, )=2,3,..,6-necessitate to solve dnving
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Equate the remainder to zero to
obtain m-equations relating
the coefficients of D (8)

Assume zero static error and

apply final value theorem,

Controller’s gain"

K = lim D (8)/Na(8)=a~/const.
S0

N(B) = (1/K) [De(S)-Da(8)]

= rT.adj(8]-A).b
Equate coefficients of
8',i=0,1,.,n—1 in both sides
to obtain n—-squations relating
the (n-m) state feedbacks
i.e. res = flas, az,...an)
where f 2 1,2,:25:5¢¢n—M)

y

Solve the resulting
n-simul tanecus equations in
A1, Az, ....3n

Bubstitue to get K, r.,
§ =R, ...y (=)

Figure 8. Logical procedure for controller’s design with
constraints.

another three equations. These equations can be derived by
substituting the proposed three poles into the characteristic
polynomual of the closed-loop control system.

Solving the above mentioned five simultaneous equations,
the unknowns a, through ag could be determined. Hence,
substituting these values of the coefficients in equations (20),
(23) and (26), the controller’s gain K and the state feedbacks
ry and rg could be calculated as well.

The algonthmic procedure of this approach is pictorially
visualized indicated in Figure (8).
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Numerical Illustration:

Consider a ship with the following partlculars
L =200m, L/B=26.5
L/D = 19, V = 16 Knots

The center of pressure i1s located at 0.033 L forward
amidships and, the longitudinal center of gravity is located
at 0.015 L aft amidships. Rudder area ratio = 1.5% (L x D)
with an aspect ratio 0.10526.

According to [10,11] the displacement and the shaft
horsepower of the ship will be 50135 tons and 15917 shp
respectively. The time constants of the ship besides the poles
of the marine vehicle dynamics will be computed as
T, = 60.81 (s), T, = 95.64 (s), T; = 48.68 (s) T,
75.78 (s), S; = -a; =-0.01 (s1) and S, =-a, = -0.07 (s l)

Concerning the numerical data of the electrohydraulic
controller, the following particulars are picked up as
1—004(s), K, = 1.3x 103 /sperunjtvolt,

Ky =4m /s. and K3 = 325 rad/s.

Substituting the numerical data of the system into equations

(20) and (22) through (27) we get:

K = 47.655 a (28)
rp =1
as
ry = 0.6932 2 _ 43.3089
% , '
(29)
- 2.0007
r5 = 0188 (Rt '
ag
J
1581.06 ry + 0.0426 rg = 0.1581 -*
a6
[(30)
- 0.0175
19763.25 1, + 4.8648 rg = 0.1581 (=2 )
J
a, = 25.08 __—

To eliminate r, and rg from equations (30), equations (29)
are substituted into equations (30), it results:

7x107ay-24+113.9451a5-7121.5714a6=1.4x10 (32)

0.08a, -a; + 1424.3143a5 - 89019.6429a¢ =0.1426 (33)
In accordance with equation (31) the negative sum of the
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six poles of the characteristic polynomial should be 25.08
Referring to the block diagram shown in Figure (5) a
taking into account that the value of the state feedback r, =
1, it is deduced that two poles of the closed-loop systen
almost coincide with the poles of the ship dynamics.

In other words the physical nature of the control systen
implies that, it possesses two poles in the neighbourhood o
-a; and -a. Therefore, let two poles of the control systen
be located at S; = -0.05 and S, = -0.08."

To assign the third pole of the system, equation (2§)
should be investigated. In order to get a considerably
reasonable value of the controller’s gain K, the value of &
which represents the product of the six pdles should be
relatively great. Since the negative sum of the remaining
poles lies approximately in the vicinity of 25, an-assumption
of S; = -12 will fulfill the required condition of the gain.
Moreover, being for enough from the imaginary axis, the
third pole will improve the transient response of the control
system. It should be emphasized that whenever possible real
poles should be assigned aiming to avoid oscillations of the
ship. In case that conjugate complex poles are inevitable, a
damping factor near 0.7 will lead to the minimization of the
oscillations of the ship and decrease the settllng tiume 1n the
associated loop dynamics.

‘Considering the poles -0.05, -0.08 and -12 and performmg
the long division, the characteristic polynomial could be
rewritten as

§6+25.085% +a,5% +0,5% +a,52 +a S +ag
=(S +0.05) (S +0.08) (S + 12) *

3 ST ]
[s +12.955% +(ag 158.6475)S+20.83?3/a6j

)

The remainder of the long division when: equated to zero
provides the following three equations

12.13 a, -2, +20.8333a¢ = 1904.0924

(34)
1.564 a, - a, +252.7083 a5 =247.503 1 (35)
0.048 a, -a5 +32.5833a5=7.6151 (36)

Solving’equations (32) to (35) simultaneously yields the
values of the coefﬁc1enls a, through ag. The obtained values
of the coefﬁclents are' as follows -

a, = 158.8128 ,a; = 22308

ag = 0.8894  ag = 0.0091
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ud & = 3.639 x 10°°
Hence, the poles of the characteristic polynomial are

-0.05, -0.08, - 12.0, -12.9372,
-0.0064 + j0.0042 and - 0.0064 - ;0.0042

The numerical values of K, ry and ry become,
K =17.34 x 104, r,= 130.05 and rg = 68.6 x 10*

Evidently, these results express only mathematical values
which are excessively far from the performance of the actual
components. This is attributed to the absence of some
LVDT's and amplifiers, which when readjusting these
numerical values in an equivalent block diagram simulates
the actual physical nature of the system’s components as
shown in Figure (9).

Piant

m»**

Figure 9. Final block diagram of the components of the
control system.

The preceding computations were carried out by using the
package MATLAB [13] on a personal computer.

Finally, the dynamic behaviour for both @ and 6,
without and with controller with respect to a step input of
(10°) are displayed 1n Figures (10) to (13) respectively.

80 r T

BOF

O 1 -
0 200 400 600

Figure 10. 6, versus time without controller.
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Figure 11.. ém versus time without controller.
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Figure 12. 6, versus time with controller.
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Figure 13. ém versus time with controller.

CONCLUSION
The modern approach of state variable feedback and pole

placement has been applied to the problem of directional
control of ships.
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A design procedure of the controller’s gain and the state
variable feedback under prespecified constraints has been
derived. It was intended to discard the state reconstructor,
consequently the algorithm has been modified to suit the
resulting case. A numerical case study has been analyzed by
the package MATLAB on personal computer and the
dynamic performance has been displayed.
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