BOUNDARY ELEMENT METHOD APPLIED TO PLATE BENDING
AND COMPARATIVE ANALYSIS WITH FINITE ELEMENT METHOD

M. Nasser Darwish
Structural Engineering Department, Faculty of Engineering,
Alexandria University, Alexandria, Egypt.

ABSTRACT

The boundary element method (BEM) as applied to flexure of thin plates is reviewed briefly, along with the
derivation of the integral equations for the direct formulation. Besides, the main techniques used and difficulties
encountered are discussed. The differences between the BEM and the displacement finite element method (FEM)
are emphasized. The efficiency and accuracy of both methods are compared for several rectangular thin plates under
transverse static loading. The merits of the BEM are highlighted. The BEM solution accuracy is better especially
for higher derivatives of the function, a point of importance in inelastic analysis. Results are presented and
conclusions drawn for the studied cases.

NOTATION
W out of plane deflection, (L) B, C the boundary
iw L S ds boundary segment
= normal derivative at field point N, B0 OF bemdary: ikt
M bending moment per unit length in N, no. of boundary nodes
direction 1, (FL/L) n; no. of internal elements
E Modulus of Elasticity, (F/L?) a,b in plane plate dimensions in direction of
Lh plate thickness, (L) coordinates, (L)
) Poisson’s ratio n,, n, components of the outer unit normal to
q(xy) uniformly distributed load on plate, plate boundary
(F/L?) SS simply supported
§ strain CL clamped
¢ Global error measure p,q=1,j denote source and field points,
0 stress, (F/L2) respectively (in equations)
VQ shearing force, (F/L) p.q.k denote internal points
DOF degrees of freedom P,Q=i,j denote source and field points on the
D plate flexural rigidity, (FL?/L), boundary, respectively
Eh3 ay, d.ij, €ij» fij’ bij matrix coefficients (ith element, j‘h
—IE(T—V_Z) element)
P Laplace operator = (-9_+19) in  INTRODUCTION
9r2 ror
cylindrical coord. The boundary element method (BEM, also called the
7= V2 biharmonic operator = boundary integral equation method, BIEM) is a powerful
34 5 3¢ general-purpose numerical procedure for the solution of
y +2_._2._5 TS boundary value problems in two and three dimensional
QX ax“ay ; ay elastostics [1, 2, 3, 4, 5, 6]. It is an attractive alternative to
¢ dlsplacement‘ function the finite element method (FEM) for the numerical solution
! Eu‘cledean distance from source to field of transverse bending of elastic thin plates, the application of
point 21TV which is of vital importance in the design of many
ot normal and tangentxgl directions to the structures. The BEM is gaining popularity among other
bound:‘iry (at ﬁe.ld point) methods due to the possibility of reduced dimensionality of
LY,Z Cartesxan c9orf1mates’ the problem, since only the discretization to the boundary is
K i " plfme point i coordinates needed, resulting in a reduction of the system of equations
AB interior of the plate, plate x-sec. and smaller input data required for computation.
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DARWISH: Boundary Element Method Applied To Plate Bending

PLATE BENDING

The governing differential equation of transverse
deflections of thin elastic isotropic plates of uniform rigidity
loaded by out-of-plane forces is the inhomogeneous
biharmonic equation [7]:

v“w=v2v2w=_q_(_l’;’2=g xye0 (1)

assuming that the Poisson-Kirchhoff assumptions hold [7]
and that the transverse displacement and rotations are
dependent.

This equation can be described by a system of boundary
integral equations [8,9,10,11]. It can be reduced exploiting
Green’s formula to the solution of an integral equation over
the boundary which can be handled numerically by the usual
techniques of replacing it by a corresponding set of
simultaneous algebraic equations for functions on the
boundary. In the BEM the discretization for the numerical
solution is carried only on the boundary and not the whole
domain, as done in the FEM. If values at interior points are
required, they are calculated afterwards from the surface
data. The resulting equations may be more complicated but
the system of equations is smaller. The BEM has been
applied to the problem of elastic (7,9,10,11,12,13,14] and
inelastic [16,17] bending of thin plates. The associated
elastic biharmonic equation has been solved indirectly
[10,13] by using an integral representation of the solution in
terms of certain known kemels and unknown source
densities (functions) defined at the boundary. A different
approach has been proposed [11] using solutions other than
Green’s function in an unbounded domain, by embedding the
problem in another one for which the Green function for a
concentrated load and moment are known. Direct BEM
formulations relating the quantities

w, 3% vy and 9 V2

dn dn
deflection, normal slope, moment and shear, respectively, on
the boundary have been used [9,14,15]. A more direct
approach was employed [15,18] to solve directly for the
required physical values on the boundary.

Usually the BEM formulation leads to a pair of coupled
Fredholm type singular integral equations derived from the
Rayliegh-Green identity for the biharmonic equation [16,19].
These two equations are usually the integral representation
along the boundary of the deflection and its normal
derivative. The second involves the derivatives of some
singular kernels and their computation can be difficult [8].
An alternative secend equation has been proposed [8] based
upon properties of geometric similarities.

Certain difficulties are associated with plate problems. In

to the physical quantities:
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case of polygonal boundaries, complications appear at the
corners owing to their infinite curvature. Bending stresses
become unbounded in the neighbourhood of a junction of
two edges including an obtuse angle unless both edges are
clamped or free. At free boundaries conditions containing
higher derivatives of the displacement are involved which
are not well adpated either to theoretical or numerical
analysis [9,20]. Computation of moments and shears at the
boundaries requires second and third differentiation of the
deflection. In case of the indirect method this requires the
differentiation of layer potentials at a source point on the
boundary. These difficulties make an independent treatment
of plate problems necessary and have limited the analysis in
some early studies to clamped and/or simply supported edge
conditions [7,13,16,17]. Nevertheless, plates with arbitrary
shapes, loadings and edge conditions have been tackled [18,
20].

Various methods have been used to handle such situations:
rounding the corners as a first approximation [10]; using
double nodes at commers with zero length elements in
between [16]; and using a multiple node concept with
auxiliary relationships [1,5]. Other alternatives include:
defining an integration contour which differs from the actual
plate boundary to avoid numerical difficulties in case of free
boundaries [20]; and requiring that the deflection and their
derivatives up to the third order should be continuous and
bounded [15]. Shu and Mukherjee [18] obtained three
equations at each boundary node through the use of
appropriate fundamental solutions for each node on the free
edges, and used three unknowns (w ,% and %)
requiring three independent boundary integral equations; the
usual singular solution due to a point load plus two particular
solutions corresponding to concentrated moments (tangential
and normal).

Other difficulties include the inhomogeneous term in the
governing differential equation. This term might give rise
to a domain (area) integral which seems to spoil the inherent
merits of the BEM as a boundary (line) discretization
method. However, for some simple load cases using
particular integrals can transform the domain integral to a
boundary integral. Even if the domain integral is to be
evaluated explicitly (still numerically) requiring the use of
internal cells (elements), i.e., domain discretization, the
topology of the internal elements is simpler than that of the
FEM. Internal cells in the BEM do not add additional
equations or unknowns to the overall system of equations
and thus the number of equations depends only on the
boundary discretization and not on the internal nodes (at
least for elastic analysis). Besides, this internal discretization
is done in BEM programs with the minimum user
interference, thus the merits of the BEM as a boundary
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dicretization method are still preserved.

Furthermore, other difficulties include the "boundary layer
effects”. Since all approximations are confined to the
boundary, as an interior point is too close to the boundary
there would be rapid degeneration in the numerical accuracy
of the stress and strain components as one samples quantities
at an internal point very close to the boundary. Curvatures
could be evaluated at an inside point analytically by careful
analytical differentiation of the BE equations under the
integral sign [16]. As a rule of thumb [S] degradation of
accuracy may occur at distances less than one element length
from the boundary.

DIRECT BEM FORMULATION [9,16,19]

Since the direct BEM formulation deals with quantities of
physical significance, such formulation will only be
mentioned here.

Fundamental Solution
The fundamental solution is that for the displacement at

any point in a plate of infinite extent produced by a unit load
wling at a point [1]. For an infinitely extended plate:

Figure 1. Fundamental solution.

W) Yimietd @)
where
DVw'(x,y)=8 (x -x;) (y-y;), Dirac Delta function

R

using Green’s second identity

L (u vy —vV2u)dA =Js(uﬂ -vé_u.)ds
dn dn

Jet u=V2¢
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v2v2¢=¢2u=g=%<x,y)

L(v2¢v2v —vg)dA:J (V26 9Y _v 9 v24)ds
B on dn

interchange ¢ and v

" o fradRs L X I POR:AR
{(.ov'v vg)dA a£[¢an(v¢v) anv'v vanv% = ®lds

V2r2lnr =4(1+1nr)
V*(r®Inr) =4 V2 (Inr) =4(27)d (p,q)
Vv =V (r%lnr) =87 8 (p,q)

“awé(p) = L(rzlnr)gd A+
¢

a 2 I, 2 h,i 2 —@*n)-2
a{[g(Vr Inry, - ¥ (r*1nr,) L Inr) ¥ ¢, - (r*Inr) 2= Vé,1ds(3)

in addition to another equation due to Poisson’s equation.

Finally for V4w = ﬂ(_’l‘)'_” u

ox Vw(p) - [ (nr)gdA, = [ -2 (or) Pwg - Inr-2- P ]ds (4)
. seon on

and

2
darw(p)- [ Pln)gdA, -f[a—an(V'(r’lnt)]wQ—Vz(rzlnr)—a%Q
B oB

I .;E(rzlnr)vzwq -rzlmainvzwojds )

n is the normal to dB(C) the boundary at the field point

a=1, source point is on the boundary C where it is locally
smooth,

a=2, source point inside the plate.
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Discretized Equations

Assume the boundary dB(C) of the plate to be divided
into N straight boundary elements, N (N,=N,) boundary
nodes and the interior A of the plate divided into n; internal
elements (say triangular cells). Therefore, there are (2* Ny)
unknown nodal boundary values since two boundary
conditions out of the four quantities;

w, %_v!, Vw andai V2w are specified at each boundary.
n n
These (2* Np) unknown nodal boundary values can be

calculated from two equations (equations (4) and (5)) written
for each boundary node, i.e., 2* Ny equations. Assuming
that the previous quantities are constants [9] over each
boundary element then:

n N, ow.

drwi= T lany (@A) T (o, <4y 3L e Py (2w (6)
k-1 j=1

and

N,
E (Inr), (gA), + 2 (a‘JV2w-+b‘j%V2wj) )

i = 1,2,... Nb

If the previous quantities are assumed to vary linearly [16]
over each boundary element then:

*Vw,=Y [ lorgda,+ E [ (_mvﬂw un_vﬂw)ds(S)
N AN N, AB,

and a similar discretized version of equation (6). For the
discretization scheme and boundary conditions see Figures
(2) and (3).

Figure 2. Plate discretization scheme.
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Boundary Conditions [20]

gln =0

Jw
an I ay 7

Clamped wlgts # 1 iy LRIV B!

Pw 2 ? ¥ 01 ol
alle QG =0
YR AR TR A B

Simply Supporicd: w = 0, M, = 0,

Ay, B, Mrc componacals of the uuicr wait sormal 1o the plaie bosndary.

For free edges. sec references (9,20).

Figure 3. Plate boundary conditions.

The Final Form of The Discretized Equations

[A] {x} = [B] {y} + {d} (
where,
[A], [B] = depend only on geometry (no. of bounds
nodes and their distribution)
{x} = vector of the unknown quantities (on t
boundary)
{y} = vector of known quantities (on the bounda
{d} = contains integral of the kernels r? Inr a

rinr over internal elements (say triangu

internal elements)
These fully populated unsymmetrical set of simultanec
equations (2* N, equations) are solved to obtain
unknowns on the boundary, i.e., 2 unknowns of any of

%w Vw andai V2w at each boundary nodal point. Or
n

this has been done the interior solution at any or every po
could be easily found by writing the BE equation(s) for t
required internal point(s).

BEM Computer Program

The BE numerical implementation of the previo
formulation was done utilizing a BE plate program origina
developed by Morjaria and Mukherjee [16,17]. Line
ﬂ , V2 _é_Vzw over each straig
n

variation of w, w and
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boundary element is assumed. Curvatures are obtained by
malytical differentiation under the integral sign of the
discretized appropriate BE equation. Special attention was
pad to boundary curvatures to avoid the boundary layer
effect.

THE DISPLACEMENT FEM FORMULATION

The state of deformation of the plate is assumed to be
described entirely by one quantity; the lateral displacement
of the middle plane. "C_," continuous, non conforming
rectangular elements as used by Melosh and Zienkiewicz
[21] are used here. The individual stiffness matrix for each
element is 12x12, i.e., 4 nodes of the rectangular element
multiplied by 3 degrees of freedom (DOF) at each node,
Le., the transverse displacement of the plate and its
derivatives in both cartesian coordinates.

Formulation of the Element Stiffness Matrix

The element stiffness matrix is easily formulated [21] as:

K¢ = J [BT] [D] [B] dvolume (10)
v
where,
[K¥] = element stiffness matrix
[B] = strain matrix
[D] = elasticity matrix

In the FEM the whole domain and the boundary are
discretized thus the total number of equations depends on the
total number of the nodes not just the boundary nodes as in
the BEM. Typically here the total number of equations
generated equals no. of DOF (3) x total number of nodes.

STRUCTURAL ANALYSIS OF THE ELEMENTS
ASSEMBLAGE

The solution proceeds following the basic operations of the
displacement matrix method. The individual element stiffness
matrices contributing to each nodal point are superimposed
o obtain the overall stiffness matrix of the whole plate. This
is basically writing the equilibrium conditions at each node,
and can be symbolically expressed as:

[K1=Y [K{] an

i=1

where,

[K] = overall global stiffness matrix of the whole plate
structure

1 = no. of nodes.

Alexandria Engineering Journal, Vol. 32, No. 2, April 1993

The equilibrium equation between the applied nodal forces
[P], and the resulting nodal displacements, {A}, can be
expressed as:

[P] = [K] {A} (12)

Finally the element stresses are determined using the stress
matrix.

DIFFERENCES BETWEEN THE BEM AND THE FEM

The BEM identically satisfies the governing differential
equation and approximately satisfies the boundary
conditions, thus the solution variables will vary
continuously throughout the region and all approximation
of geometry...etc., will occur at the outer boundaries. In
the displacement FEM the compatability condition within
elements and the displacement (geometric) boundary
conditions are exactly satisfied while the equilibrium
equations and boundary conditions on stresses are
satisfied only approximately, and the stresses are
discontinuous at nodal points.

The FEM has constraints on the discretization process
(interelement continuity) and its minimum requirements
[21]. While in the BEM there are no constraints on
interelement continuity or discretization process, and this
might explain why constant elements work in the BEM.
[n the BEM more arithmatic calculations are involved in
constructing each element or row of the overall matrix,
but the overall system of equations are smaller than those
of the FEM. In the BEM the final matrix while smaller
1s unsymmetrical and fully populated due to the coupling
of all points and contributions from all boundary
segments. In the FEM mainly the final matrix is larger
but symmetrical and banded (sparse) as only the elements
are related to their neighbours rather than to all other
nodes, i.e., only coupling between adjacent neighbouring
nodes.

In the BEM the solution variables vary continuously over
the domain (e.g., stresses are smooth) and can be
obtained accurately at any particular interior point, after
solving for the boundary unknowns, but does not require
that the whole interior domain be solved. In the FEM
stresses are (mainly) discontinuous at nodal points and
schemes for averaging and smoothing them are required
and the best values of stresses are obtained at integration
points (3x3 scheme used here). In the FEM the whole
problem should be solved before the stresses are obtained
at a particular point.

The BEM computational effort increases proportionately
with the number of internal points at which the solution
is required. Thus if the solution is required on the
boundary and at only few intemnal points, the BEM for
the same level of solution accuracy requires considerably
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less computational effort than the FEM. If however the
solution is required throughout the domain of the body,
the FEM may be faster than the BEM.

NUMERICAL COMPARISON BETWEEN THE BEM
AND FEM

The BEM and FEM solution accuracies for thin plate
bending under transverse loading are compared as a function
of mesh refinement, different boundary conditions and aspect
ratios. The comparison is confined here to rectangular
plates, most of which the exact or analytical solution is
available, to make the comparison more meaningful. It is
worth recalling that for the employed BEM the quantities
w, .3_: , V2w andai V2 w are assumed to vary linearly over

n
boundary elements. For the employed FEM, w is cubic,
slopes are quadratic and the strain within each element is
linear.

Cases Studied

- Uniformly loaded simply supported and clamped square
plates with several discretizations.

- Corner supported uniformly loaded square plates.

- Uniformly loaded square plates with a variety of
boundary conditions.

- Uniformly loaded rectangular plates with several aspect
ratios.

Unless otherwise mentioned the BEM used had 36 nodes
on the boundary and 81 internal nodes. Symmetry conditions
were not taken advantage of in both methods and the
solution was carried out for the entire plate. For each case
full comparison between both FEM and BEM regarding
transverse deflection and bending moments at all points on
the boundary and interior was made, however, only results
at significant points and those of pronounced differences are

reported hereafter.

DISCUSSION OF RESULTS

Numerical results and comparisons for both methods for
the studied cases are shown in the given tables and figures.
- Table (1) for a uniformly loaded square plate reveals that

for approximately the same level of discretization the

BEM results are more accurate than those of the FEM.

For example the BEM with 36 nodes and 81 internal

points rendered better results for central deflection and

bending moment at the centre and mid sides than the
FEM with-8 x 8 mesh. For the same desired level of
solution accuracy the BEM requires a coarser mesh than
the FEM.
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For plates with different boundary conditions Table
the slight discrepancy of the BEM from the exact

is less than that of the FEM, and the BEM yi
obviously better results than the FEM especially
moments, in almost all the studied cases.

In almost all cases the agreement between both mel

1s excellent and the results are within 5% of the e
answers, Tables (1 & 2), confirming the accuracy of
procedures used.

For a clamped plate uniformly loaded with aspect ratioy
a/b=2 and 4, higher discrepancies from the el
solution are obtained especially for the FEM case. Thy
1s expected as changing the FE aspect ratios beyol
certain limits can affect the accuracy (same number of
elements is used in each direction). While the BEN
seems not to suffer and gives better results than th
FEM, especially for bending moments. The situation
would be reversed however for rectangular regions with
high aspect ratios, since for the BEM in such cases
substructuring of the region under consideration inly
several subregions would be inevitable to render good
results, but would complicate the problem.

When both the BEM and FEM results are compared to
BEM results of reference [11], Figure (4), the boundary
layer affected the results of the latter, at points located a
distances less than the boundary segment length from the
boundary. This confirms the need for special boundary
curvature treatment and special extrapolation techniques
to overcome such effect or the use of shorter elements tc
discretize the boundary.

For a uniformly loaded simply supported square plat
whose series solution is available, the "global erro
criteria” [22], for both methods are compared.

Global error criterion for deflection,

E [wpmg ~Waeries]
_Nipt

€y N

ipt

Global error criterion for bending moment,

E [Mpmgnm ~Maeries]
_Nipt
€M = N

ipt

where, N;,, = no. of internal points in the BEM used. Tt
BEM and FEM internal points were chosen to have the sam
locations so that the results can be compared at sin;il:
points. For the BEM (36 ‘boundary nodes, 81 internal point

and the FEM (8x8 mesh)

Global error Criterion
BEM
FEM

€y €M >
0.9345 x 1050.01551 x 10™~
0.9479 x 10°0.11660 x 1072
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Table 1. Uniformly distr. Load on a square clamped plate.

4 FEM
AT .7 BEM i
. 4
A e
3
Sec(a 2.2}
;; "
FifL
3 —f
A v
w
FEM (lumped 1ds.) Table (1-a).
Mesh Total # Winax w M. M M* M*
of Nodes | coeff a x10? | Rel. error% | coeff 3 | Rel. error % | coeff y | Rel.error %
1 2%2 9 0.1479 + 17.0 355 -30.8 461.8 + 99
2 4x4 25 0.1404 + 314 476 -7.2 277.8 + 20.2
3 6x6 49 0.13222 =:15.7 495.5 -3.4 249.5 + 8.0
4| 8x8 81 0.1303 + 3.4 502.8 -2.0 240.5 + 4.1
51 12x12 169 0.1283 + 1.8
6| 16x 16 289 0.1275 + 1.2
BEM Table (1-b).
Total no. of w M- M* Mt
Bndry nodes | NIPT | coeff @ | Rel. error % | coeff 8 | Rel. error % | coeff | Rel. error %
¥
4x5=20 25 ]0.001291 +2.5 530.4 + 3.4 233.8 + 1.2
4x9 =36 81 |0.001274 + 1.1 515.5 + 0.5 230.1 0.4
4
q = uniformly dist. load, NIPT = # of internal pnts. w,,, = 23 p = _EI Y v
D (1-»%) ' 10

Relative error % =

solut -exact

Exact

% Exact solution:

a = 0.001260 7], 8 = 513, y = 231 [21]
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Table 2 Uniformly loaded Platcs.
a/b Casc w Rel. M',ll Rel. M, Rel.
cocll a | crror % || cocll B | crror % || cocll. ¥ | crror %
- BEM 0.001274 + 1.1 515.5 + 0.50 234 + 12
cL fk TEM || 0.001304 | + 3.4 502.8 -20 240.5 + 4.1
BEM || 0.004097 +0.9 0 0 479 0
X ¥, o = . -4
s - FEM || 0.004033 0.7 0 480.5 +0
BEM | 0.002090 667 313
1 CL S5 FEM | 0.002128 662 313
' BEM | 0.00279 0.4 839 0.1 392 +05
cL SS FEM || 0.00279 0.4 816 2.5 399 +23
BEM || 0.001581 [ + 0.7 599 -03 279
C FEM | 000160 | + 19 589 2.0 292
CL
—
BEM || 0.002565 | + 1.0 575 +0.7 159.4 + 09
CL L FEM || 0.002565 | + 1.0 490 - 142 159.3 + 09
2
C
Ss BEM || 0.01006 09 0 0 465.5 +03
! Ss FEM || 0.01010 -05 =0 465 +0.2
SS
4 ?ﬂ&&nw BEM || 000266 | + 55 580 + 1.6 125 0
CLi RCL FEM || 000200 | + 32 333 -41.7 127.5 +20
ol % ‘
ss BEM || 0.01290 -0.2 0 0 381 -0.8
FEM || 0.01278 13 =0 381.3 -0.8
SS, SS
SS J

Exact solul Ref. [7], w, M, al paL 2, M, at pat 1.
FEM mcsh 8x8, (lumped loads), wholc plalc no symmelry ulilized.
BEM 9 nodcs on cach sidc, no. of interaal points = 81

M

.u - 'ﬁ q 12/10‘1 Mlz.7(llz/104n W aq'lﬁ‘v D =

4 E13
12(1-»%)
solut - cxact

rclativecrror % = ————— %, 1=D0

C 80

cxact
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Y

Clamped plate a/b: 2

Unilor my Loaded |
i

b2 o x
0.05 l 2

0

“,Aiah

+ Curreat BEM & FEM (coincidenl)
X BEM Rel. [11]

0 BEM cxtrapolated [11]

* cxact

-0.051
Figure 4. Boundary layer effect.

This reveals that the BEM although slightly better for
calculating deflections is obviously superior to the FEM for
calculating bending moments (stresses, derivatives of w).
This may be an important issue especially for inelastic
problems, as the failure criteria may be based on stress
calculations, the accuracy of which at all plate points can
influence the overall solution. Small discrepancies in the
solution at points of interest may be within the acceptable
accuracy, nevertheless, the analyst may be uncertain as to
the total effect of such discrepancies on the global overall
problem.

- In terms of assessing the efficiency of both methods a
trade off between solution accuracy, computational aspects,
input/output, and human effort should be considered for a
particular problem. This impairs any generalized
statement. In fact for large, infinite domains the BEM
would be better. While the FEM is sometimes better for
finite size bodies with fine details, plates with non-
homogeneous material properties, multilayered plates,
shells (combination of flexure and membrane actions),
thick plates and narrow thin strips. Indeed the two methods
might well be combined to advantage in suitable situations.

CONCLUSIONS

The BEM is an accurate and efficient numerical technique
for the analysis of thin plate bending. It leads to reduced
dimensionality of the problem, since only the discretization
of the boundary is needed, resulting in a reduction of the
system of equations and smaller input data required for

computation. Even when domain integrals are to be
evaluated using internal cells (FE technique) they do not add
to the total number of equations and the merits of the BEM
are still preserved. The BEM often complements, and in
some cases replaces, the FEM. The appropriate combination
of both strategies is beneficial in handling suitable situations.
The accuracy of the BEM is superior than that of the
displacement FEM particularly in calculating the derivatives
of the displacement (i.e., stresses), an important issue to the
overall problem solution, especially for inelastic problems
based on stress and strain limits as failure criteria.
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