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ABSTRACT

Catastrophic Convolutional Codes (CC) cause an infinite number of decoded data bit errors when decoding a finite
number of code symbols. A CC displays a catastrophic error propagation if the generating polynomials have a
common factor. An efficient algorithm for polynomial factorization in GF (2) is used for detecting catastrophic CC
for any rate n/m and constraint length k. A general formula is derived to calculate the number of catastrophic codes

in any (m,n,k) CC.
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I.INTRODUCTION

In recent years, intensive research has been directed
towards finding efficient and practical coding schemes for
various types of noisy channels. Convolutional Codes (CC)
are superior to block codes for the same implementation
complexity of encoder-decoder [1]. However, there is a
possibility of having a catastrophic CC [2]. Massey and Sain
(3] have proved that the necessary and sufficient condition
for a CC to display a catastrophic error propagation is that
the generator polynomials of the code have a common
factor.

In the present paper we use polynomial factorization in
GF (2™) as a tool to detect catastrophic CC. Tables of
catastrophic codes are included. Computer results are in
agreement with previous published results.

2.BASIC DEFINITIONS
2.1.Convolutional Codes

A convolutional code of rate R=n/m and constraint length
k, denoted by (m,n,k), is defined as the output range of
some n input, m output feed forward modular circuit over
GF (2). K represents the number of n-tuple stages in the
encoding shift register. For an information sequence of
length nL, the corresponding output has a length of m(L +k),
where the last mk outputs are generated by a string of nk
zros catenated to the input sequence to allow the encoder
memory to clear. The output sequence is generated by
convolving the input sequence with a fixed binary function.
The encoder complexity is independent of the message and
depends only on the code rate n/m and the shift register

length k.
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2.2.Connection representation

A CC encoder (m,n,k) can be represented by n shift
register (s) of lengths < k each and m modulo-2 adders
(implemented by XOR gates) as shown in Figure (1).
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Figure 1. A (m,n,k) CC encoder.

As input bits are fed at a rate n/time-unit into the shift
register, the output is sampled at the rate m/time-unit thus
forming the code symbol corresponding to the input. The
choice of the connections between the adders and the stages
of the shift register forms the characteristics of the code.

2.3. Polynomial representation

The encoder connections are characterized by the generator
polynomials

K
gp() = Yy =g;p ;X 1<i=n,
J=0
1 <p<m,
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where 8ip,j 1S elther 0 or 1 and it corresponds to whether the
jt stage of the i register is connected to the p® output or
not. If the input U is represented by a polynomial

n
U®x)= E Uix“1 ,
i=1
then the output sequences V are given by

V, (x) = 1=El Ux)gp(x). 1<p<m

The following is the polynomial representation of a typical
(2,1,2)CC, where i is omitted for (n=1):

gl(x)=1+x+x2,

123 (X) = + X 2!
The lowest-order term of the polynomial corresponds to the
input stage of the register.

2.4. Systematic codes

A systematic convolutional [6] code is one in which the
input n-tuple appears as part of the output branch word
m-tuple associated with that n-tuple. In each branch the first
n symbols are exact replicas to the input n symbols followed
by m-n parity or coded symbols.

vO = yo®
2.5.State representation and state diagram

A fixed convolutional encoder may be regarded as a linear
time invariant finite state machine. The state of a CC

encoder is the contents of its shift registers. For a binary
encoder of constraint length k there are 2* states.

The encoder state is Markov, i.e., the probability of being
in state x;, ; given all previous states depends only on the
most recent state

P (Xit1 \ X Xips Xis oo = P (X4 \X)).

The state diagram representation of a (2,1,2) CC encoder
is shown in Figure (2). The number of links emanating from
each node is equal to the input alphabet (two in case of
binary). Dotted lines designate a 1’ input while continuous
lines designate a ’0’. The 'D’ labels on the branches denote
the Hamming distance between the output of the branch
transition and the all-zeros path.
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Figure 2. The state diagram representation of a (2,1,2) CC.
3. CATASTROPHIC ERRORS

A catastrophic error [7] is defined as an event whereby a
finite number of code symbol errors cause an infinite
number of decoded data bit errors. Massey & Sain [3] have
derived a necessary and sufficient condition for the
convolutional codes to display catastrophic error
propagation, namely that the generators have a common
polynomial factor. A simple example of a (2,1,2)
catastrophic CC is

ggx)=1+x,

g (X) =x + x* = (x) (1+x).
The condition of a common factor occurs if any closed-loop
path in the diagram has a zero-weight (zero distance from
the all-zeros path). Thus for the CC of Figure (3), an
assuming the correct path to be the all-zeros pathy
a-a-a-........ -a-a-a, the incorrect path a-b-d-....... ~d-c-a has.
exactly 6 ones, no matter how many times we go around the
self loop node at d. Thus three channel errors may force us
to choose this incorrect path. The total number of errors is
equal to (2 + the number of times the loop d is traversed).
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e Ay T o

[N T | e e O,

The connection representation of a (2,1,2) catastrophic CC.

2
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The state diagram representation of a (2,1,2) catastrophic CC.

Figure 3. A catastrophic (2,1,2) CC.

In the case of systematic codes, data symbols appear
directly on each branch in the state diagram. Thus it is
impossible to have a self-loop in which a distance to the
all-zeros path does not increase and therefore these codes are
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NON CATASTROPHIC

In the special case (m,1,k), if each adder in the encoder
has an even number of connections, the self-loop
corresponding to all ones data state will have a zero weight,
and consequently the code will be catastrophic [8].

The problem is to find a simple and fast method for
detecting catastrophic CC in the general case (m,n,k). In
section 5 we present an efficient technique for catastrophic
CC detection based on polynomial factorization described in
section 4.

4.POLYNOMIAL FACTORIZATION IN GF (2™)

Given the polynomial f(x) of order n

fx) = ¥ a,x';a,¢ GF(2)
i=0

The prime factor polynomials of f(x) in GF (2™) are

determined from look-up tables, if available, or generated by

special techniques [9]. In the following, some interesting
properties of prime polynomials, which will be used
subsequently, are given.

1. Up to a given order n, there exist 2°*! -1 polynomials,
of which, exactly 2°* 14 1 polynomials have a common
factor of order (d).

2. Up to a given order n, there exist exactly (n/d)
polynomials having identical common factors of order
(d).

3. The number of polynomials divisible by the product of
two or more prime polynomials follows the same rule
mentioned in 1.

Table I lists the number of prime polynomial factors taken

n at a time and the corresponding order of their product. We

denote this table by T and an entry in the j row and i

column by Tj;.

5. PROPOSED METHOD FOR CATASTROPHIC CC
DETECTION

Extensive computer search is required to find a good code.
For an (m,n,k) CC there are 2®+©m different connections
(or codes). The present method detects which of these are
catastrophic. In a previous paper [9] we have presented an
efficient and easy to use algorithbm for polynomial
factorization. Using this polynomial factorization technique,
a simple method is proposed for catastrophic CC
detection. The procedure is as follows:

1) Given an (m,n,k) CC with prespecified n connection
vectors, we determine the generator polynomials.
2) Determine all prime polynomial factors for each
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generator polynomial.

3) The polynomial factors are compared. If there exists at
least one common polynomial factor for all generator
polynomials, the code is CATASTROPHIC.

Table I. The member of prime polynomial factors taken n
at a time and the corresponding order of their product.

Number of
factors:i{n) 1 2 3 4
Polynomial
Order
1 2
2 1 1
3 2 2
4q 3 4 1
5 6 8
6 9 16
7 18 30 14 2
8 31 60 34 4

6. ESTIMATION OF THE NUMBER OF
CATASTROPHIC CC

Rosenberg [8] has shown that for (m,1,k) CC, only a
fraction of 1/(2™-1) of nonsystematic codes are catastrophic.
However, to our knowledge, no corresponding results have
been published for other values of n or for the general case
(m,n,k).

Table II gives a list of all catastrophic codes for selected
rates and constraint lengths. Table III lists the number of
catastrophic codes for selected CC. For the particular case
n=1, our results are in complete agreement with those of
Rosenberg. [8]

The results of the computer search in Table III can be
verified by a computational manner using the properties of
the prime factor polynomials [9] as follows:

1. Calculation of the number of catastrophic codes for the
CC (2,1,2): The Max polynomial order (k+n) is 3. The
prime factor polynomials and their combination products
are (2), (3), (7) and(2)(3). The Number of polynomials
divisible by the prime factors and/or their combinations
are: 3, 3, 1 and 1 respectively.

Since only two outputs are required, the corresponding
number of codes for each category is as follows:
of codes with a common factor (2) are 3C, = 3.
of codes with a common factor (3) are C, = 3.
of codes with a common factor (7) are IC)I =0,
of codes with a common factor (2)(3) are 'C, = 0.
of codes with similar connections (excluding systematic
codes) 2K¥0.2 = 6.

" /! ! ™™

D 75



Therefore the
3+3+6=12.
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number of catastrophic codes in (2,1,2) are

2. Calculation of the number of catastrophic codes for the

CC (3,1,4):

The max order (k+n) is 5. The number of

prime factors of orders 1, 2, 3 and 4 are 2, 1, 2, and 3

respectively

and the number of bi-prime factors of order

2,3 and 4 are 1,2 and 4 respectively and there is only
one tri-prime factor of order 4. Since 3 outputs are
required, the corresponding number of codes in each

category is:

Table II. Catastrophic CC codes.

(The generator

polynomials are expressed in their decimal

equivalents.
(2,1.2) : 2,2 a, 2.6 3,3 3,5 3,6 4.4 4.6 5,5 5.6 6,6 7,7
(3.1.2) 1+ 2,2,2 2,4,4 2,46 2,6,6 3,3, 3,3,5 1,3,6
3.,5,8 6 4,4,4 4,4,6 4,6,6 5,55 55,6 5,66
6,6,6

.
2
3.5.6
7
4

2,6 2,8 2,70 2,12 2,)'¢ 3,3 3,5 1,6 1,9 3,10

3,12 3,18 4,4 4,6 4,8 4,10 4,12 4,14 5,5 5.6 5,9 5,10
$,12 5,'5 6,6 6,8 6,9 6,10 6,12 6,'¢ 6,15 7,7 7,9

7.14 8,8 8,10 8,12 8,14 9,9 9,10 9,12 9,14 9,15 10,10
10,12 10,14 10,15 11,11 12,12 12,14 12,15 13,13 14,14
15,18

(3,4,3) : 2,2,2 2,2,4 2,2,6 2,2,8 2,2,'0 2,3,M2 2,2,14 2,44 2,4.6
2.4,8 2,4,70 2,4,12 2,4,14 2,6,6 2,6,8 2.6,10 12,6,12
2,6,14 2,8,8 2,8,10 2,8,12 2,8,14 2,10,10 2,10,12 2,10,14
2,12,12 2,12,14 2,094,074 3,3,3 3,3,%5 3,3,6 3,3,9 3,3,10
3,3,12 3,3,15 3,5,5 3,5,6 3,5.9 3,5,10 3,5,12 3,5.19
3,6,6 3,6,9 13,6,10 3,6,12 3,6,15 3,99 3,9,10 3,9,12
3,9,15 3,10,10 3,10,12 3,10,15 3,12,12 3,12,18 3,13,18
4,4,4 4,4,6 4.4.8 4,4,10 4,4,12 4,4,'4 4,.6,6 4,6, 8 4.6,10
4,6,12 4,6,14 4,8,8 4,810 4,8,12 4,814 4,10,10 4,10,12
410,14 €,12,12 4,12,14 4,14,14 5,55 5,56 5,59 5,510
5.5,12 5.5,15 5,6,6 5,6,9 5,6,10 5,6,12 56,15 59,9
5,9,10 5.,9,12 5,915 5,10,10 $,10,12 5,10,15 $,13,12
5.12,1% 3,15,1S 6,6,6 6,6,8 6,6,9 66,10 6,612 6,614
6.6,15 6,2,8 6,8,10 6,8,12 6,8,14 6,99 6,910 6,9,12
6,9,15 6,10,10 §6,10,12 6,10,14 6,10,15 6,12,12 6,12,14
6,12,15° 6,14,14 6,151 7,2,7 1,7,9 7,7.14 7,9,9 17,9,14
7,14,14 8,8,8 8,810 B8,8,12 8,814 8,10,10 8,610,12
8,10,14 8,12,12 8,12,14 8,14,14 9,9,9 9,9,10 9,912
9.9.14 9,9,15 9,10,10 9,10,12 9,10,15 9,12,12 9,12,15
9,14,14 9,15,15 10,10,10 10,10,12 10,10,14 10,10,15
10,112,112 10,12, 14 10,112,158  10,14,14¢ 10,15,18 11 1. 0
12,12,12 12,12,14  12,12,15  12,14,14 12,185,158 13,13,13
14,14,14 15,15,15

(2,1,4) : 2,2 2,4 2,6 2,8 2,10 2,12 2,94 32,16 2,18 2,320 2,32
2,24 2,26 2,28 2,30 3,3 3,5 3,6 3,9 3,10 3,12 3,18
3.17 3,18 3,20 3,23 3,230 3,37 3,39 3,30 4.4 4.6 4.8
4,10 4,12 4,14 4,16 4,18 4,20 4,22 4,24 4,26 4,28
4,30 5,5 5,6 5,9 5,10 S,12 5,15 5,17 5,18 5,20 5,23
$,24 5,27 5,29 5,30 6,6 68 6,9 610 6,12 6,14 6,15
6,16 6,17 6,18 6,20 6,22 6,23 6,24 6,26 6,27 6,628
6,29 6,30 7,7 7,9 7,14 7,18 7,21 7,27 7,28 8.8 8.0
8.12 8.1¢ 8,16 8,8 8,20 8,22 8,24 8,26 8,28 8,30
9.9 9.10 9,12 9,14 9,15 9,17 9,18 9,20 9,21 9,23
9.24 9,27 9,28 9,29 9,30 10,10 10,12 10,14 10,13
10,16 10,17 10,18 10,20 10,22 10.23 10,24 10,26 10,27
10,28 10,29 10,30 11,11 11,22 11,29 12,12 12,14 12,1%
12,16 12,17 12,18 12,20 12,22 12,23 12,24 12,26 12,37
12,28 12,29 12,30 13,13 13,23 13,26 14,14 14,16 14,18
14,20 14,20 14,22 14,24 14,26 14,27 14,28 14,30 15,18
15,172 15,18 15,20 15,23 15,24 15,27 15,29 15,30 16,16
16,18 16,20 16,22 16,24 16,26 16,28 16,30 17,17 17,18
17,20 17,23 17,24 12,22 17,29 17,30 18,18 18,20 18,20
18.22 18.23 18,24 18,26 18,27 18,28 18,29 18,30 19,19
20,20 20,22 20,23 20,24 20,26 20,27 20,28 20,29 320,30
21,21 21,27 21,28 22,22 22,24 22,26 22,28 22,29 22,30
23,23 23,24 23,26 23,27 23,29 23,30 24,24 24,26 24,27
24,28 24,29 24,30 25,25 26,26 26,28 26,30 27,27 27,28
27,29 27,30 28,28 28,30 29,29 29,30 30,30 31,31
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Table III. The number of catastrophic codes for CC of
different rates and constraint length.

Table IIl. The number of catastrophic codes
for CC of differsnt rates and constraist lengths.

Code Catastrophic NonCatast. TotalNumber Ratio
(2.1, 2) 12 16 28 0.429
£2, 3508 56 64 120 0.467
(2. 050 4 240 256 496 0.484
§2,1, '8) 992 1024 20186 0.492
(2.1, 6) 4032 4096 8128 0.496
{2, a5y 16256 16384 312640 0.498
(2,), 8) 65281 65536 130817 0.499
(2. %9 261618 262144 $23782 0.500
(2,1,10) 1047580 1048576 2096156 0.500
12, 1408 4192376 4194304 8386680 0.500
(2.1.12) 16773620 16777220 33550830 0.500
(2,1,13) 67102690 67108860 134211600 0.500
t2,1,14) 26R427200 268435500 536862700 0.500
13 RS 20 64 0.238
(2. Vi 168 512 680 0.247
{3, Vi) 1360 4096 5456 0.249
(3.1, $) 10912 32768 43680 0.250
(3.1, 6) 87360 262144 349504 0.250
Xy 699008 2097152 2796160 0.250
Y 5592321 16777220 22369540 0.2%50

| 44739070 134217700 178956800 0.250

; 357913700 1073742000 1431655000 0.250

ks 2863310000 8589934000 11453250000 0.250
(3.1.12) 22906490000 68719480000 91625970000 0.3250
(3,1,13) 183251900000 549755800000 733007700000 0.250
(3,1,14) 1466016000000 4398047000000 $864062000000 0.250
(4.1, 2) 30 256 286 0.105
(4,1, 3) 420 s 4096 4516 0.093
14,9 9) 6120 65536 71656 0.08%
{4,105 92752 1048576 1141328 0.081
(4.3, &) 1441440 16777220 18218660 0.079
5. 22717760 268435500 291153200 0.078
a3 360704700 4294968000 4655672000 0.077
it 5748970000 68719480000 74468450000 0.077

1 91804820000 1099512000000 1191316000000 0.077

- 1467446000000 17592190000000 19059630000000 0.077
234676 28147 304942 0.027

375391 450 4878991 0.077

42 1024 1066 0.039

924 32768 33692 0.027

23256 1048576 1071832 0.022

649264 33554430 34203700 0.019

19315300 1073742000 1093057000 0.018

595205500 34359740000 34954950000 0.017

18684490000 109951 11181 0.017

592143700000 351843 357765 0.017

1885671 " 114478 0.016

Number of codes in case all outputs are different is
where 1 1C; is equal to zero.
Number of codes in case exactly two outputs are similar
[2 (number of catastrophic codes in (2,1,4) - 30)] =
2(210) = 420
Number of codes in case all outputs are similar
(excluding all systematic codes) is 2k+2-2=2%+2.2=3(,
Therefore the total number of catastrophic codes for
(3,1,4) is 910 + 420 + 30 = 1360.

3. The total number of possible (m,n,k) CC is

m-1 ok
Y aictHell
p=0

where the summation counts the number of similar outputs.

4. The total number of non-catastrophic codes is 2 ™X.

5. An expression to calculate the total number of
catastrophic codes for a general (m,n,k) CC is

m-1 k+n-1 krn—d
Y m-1C; 3 (=D Tttt C,
p:o J-l i‘l

where Tj; is an entry in Table II. The first summation counts
the number of similar outputs, the second counts the number
of prime factors in a polynomial and the last one counts the
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prime factor orders.

7. CONCLUSION

We have presented a method for detecting a catastrophic
CC. We have also estimated the number of catastrophic
codes. The present method provides an efficient tool for
recognizing catastrophic CC for any values of (m,n,k) which
may be helpful in the design of good convolutional codes.
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