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ABSTRACT

The minimum free distance of a convolutional code is the most important factor affecting its error correcting
capability. In this paper we present a systematic method, easy to implement,for computing the minimum free
distance. The computer search is minimized by first excluding catastrophic codes,then applying a matrix technique

on different code patterns to locate the best codes.
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1. INTRODUCTION

The development of Convolutional code (CC) theory has
been different from that of block codes.With block codes
algebraic properties are very important in constructing good
classes of codes and in developing decoding algorithms. This
is not the case with CC which require extensive computer
search to locate good codes.

The minimum free distance (dg,.) is a good indicator of
the performance of a CC. A number of techniques to
construct good CC have been presented by Massey [1],
Berlekamp and [2] Larsen [3].

The algorithm to compute dg,.. proposed by Bahl[4] and
modified by Larsen is limited to small values of the
constraint length k and to code rates of 1/n. For large values
of k,the number of storage locations becomes unacceptably
large.

In this paper we present a systematic and easy to
implement method for computing dg.. of a general CC
(m,n,k). Although this method uses computer search, the
search is minimized by first excluding catastrophic codes [6]
and then by applying a matrix
technique on different code patterns to locate the best codes.
Good CC are tabulated for constraint lengths up to 8 and
code rates 1/2, 1/3 and 2/3. 2/3.Our computer results are in
agreement with the previous published results [7-10] when
available.

2. BASIC DEFINITIONS

In this section, we review some of the basic definitions and
properties of CC used in the computations of dg...

2.1. Convolutional Codes

In general a CC is denoted by (m,n,k) where
n is the number of input bits fed into the encoder

Alexandria Engineering Journal, Vol. 32, No. 2, April 1993

m is the number of output bits that can be obtained
k is the memory length called constraint length.

The ratio n/m is called the code rate (R). The transmitted
sequence is generated by convolving the source sequence
with a fixed binary function. The encoder complexity
depends only on the code rate n/m and the shift register
length k. A CC encoder (m,n,k) can be represented by m
shift register(s) of lengths <k and n modul o-2 adders
(implemented by XOR gates) as shown in Figure(1)

2.2. State representation and state diagram

A convolutional encoder is a linear time invariant finite
state machine. The state of a CC encoder is the contents of
its shift registers. For a binary encoder of constraint length
k there are 2X states. The number of links emanating from
each node is equal to the number of possible input patterns
(two in case of binary). The connection representation and
state diagram of a (2,1,2) CC is shown in Figure (2). The
’D’ labels on the branches denote the Hamming distance
(HD) between the output of the branch transition and the
all-zeros path, L denotes one branch unit and denotes that
the transition is caused by a ’1’ input.
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Figure 1. A (m,n,k) CC encoder.
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b. The state digram representation of a (2,1,2) CC.
Figure 2. A (2,1,2) CC.

A catastrophic error is defined as an event where by a
finite number of code symbol errors cause an in finite
number of decoded data bit errors. Massey & Sain [6] have
proved that a necessary and sufficient condition for a CC to
be catastrophic is that the generators have a common
polynomial factor. Catastrophic error propagation exists if
there is at least one closed loop of zero Hamming Distance
(zero weight) in the state diagram [11].

A systematic convolutional code [12] is one in which the
input n-tuple appears as part of the output branch word
m-tuple associated with that n-tuple. In each branch the first
n symbols are exact replicas to the input n symbols followed
by m-n parity or coded symbols. Systematic codes are not

catastrophic[11].
2.3.The minimum free distance

The minimum free distance of a CC, dg..,is defined as
follows [13]:

dge, = min {HD (V’, V"): U’ # U"},

where V'’ and V” are the codewords corresponding to the
information sequences U’ and U” respectively (after adding
zeros to the shorter one to become of equal lengths).
Because a CC is a linear code, i.e., the modulo-2 sum of
any two codewords is also a codeword; dg.,, is also the
minimum distance between all codewords sequences and the
all-zeros sequence. It is the minimum-weight codeword of
any length produced by a non-zero information sequence.

Heller has derived a relatively simple upper bound on d; .
of a (m,1,k) CC, namely

r-1
dﬁuSminI:Z (K+r—1)m}

r2l ] 2P=1

In section 3 we describe a method to calculate dg . using
the transfer function derived from the state diagram. In
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section 4 we present a matrix formulation technique for the
transfer function T(D) and in section 5 we propose a
systematic method for calculating dg,. only by matrix
multiplication using the formulation in section 4.

3. MINIMUM FREE DISTANCE CALCULATION
FROM THE TRANSFER FUNCTION.

The transfer function T(D,L,N), or generating function, of
the code is expressed as

[T(D,L,N) = final state initial state.
Consider the state diagram in Figure(2). The state equations
are written as follows:
¢c=D?LN+LNbD
b=DLc+DLd
d=DLNc+DLNd
e=D?Lb

where ’a’ denotes the initial state and ’e’ the final state.
Solving these equations, we obtain the transfer function:

D°L3N

TO,L.N)= T-D(L)(1+D)N

and using graph theory,

TMO,LN) =D L3N +D°L* 1+L)N%2 + D’ L}

A+L2 N3 +...

which gives the following meanings“s]:

1. There is only one path of distance 5 length 3 caused by
one '1’.

2. There are two paths of distance 6, one of length 4, the
other of length S and both are caused by two 1'nns.
This information is the weight structure of the code that

determines the code performance.

dfpee 18 the minimum weight of all paths in the

state diagram that diverge from and remerge with the
all-zeros state [16]. dg.. is the lowest power of D in the
transfer function. The error correcting capability, t, of a CC

I
2

Now since we are interested in dg.., we ignore all
parameters not related to the distance, namely we assign a
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value of 1 to both L and N. Thus we obtain the transfer
function T(D),

D5
TR

=D’ + 2D% + 4D7 +...

the minimum free distance of this code is 5, the lowest
power of D in the transfer function.

4. MATRIX FORMULATION TECHNIQUE FOR T(D).
4.1. The next state and output matrices

The state diagram can be represented by two matrices: The
next state matrix (NS) and the output matrix (OP).The states
constitute the rows of both matrices and the different input
patterns constitute the columns. For an (m,n,k) binary CC
both matrices have dimensions 2¥ x2". The next state matrix
and the output matrix for the (2,1,2) CC of Figure (2) are
shown in Table I.

Table I. The next state and the output matrices of a

(2120 CE.
INPUT = 0 1 INPUT 9 0 1
Y sTatt ’ ’ ‘ ¥ state l l
a4 1 00 1 3 a 1 00 1 p?
b 2 01 1 3 b 2 01 p? 1
c 3 10 2 4 c 3 10 D D
a & N z 4 a4 N D D

Next state matrix (NS)

Let NST denote the number of states (NST=2K*" and
NIN the number of elements of the input alphabet (NIN =
2", then, NS (i,j) = next state reached from state i in case
the input is j;

Output matrix (OP)

1<1s<NST;1 <j < NIN;
and OP (i,j) = is the output generated with the transition
NS(@,j).
These matrices can be automatically generated by a
computer program given a prespecified encoder connections.

4.2.The transfer function in matrix form

A technique used to describe T(D) is by rewriting the state
equations as follows [13]:

X3=D2+X2
X =Dx3 + Dxy
X4=DX3DX4
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Xy = D? Xy

where Xx;, X5, X3 and x, denote the states a,b,c, and d
respectively. Now, separating state 00 into an originating
and a terminating state, we can write in matrix form:

i i
10[*f |o p2 o of*t| | O
01|%2| o 0 o off*2| (O
= +
1|x3 [0 1 0 ollx3| [D?
|x,| [0 0 0o0fx |0
X] = [A] [X]+ [X]
X1 = (-AI'! [X,]
where [I-A]! exists for non catastrophic codes!!3].

Therefore,
[X] = { [ + [A] + [A%] + [A%]...... } [X,].

This expression is equivalent to T(D)and isuseful for
calculating the transfer function in case of large number of
states. It is clear that the matrix A 1s sparse and for
(2,1,2)CC the number of nonzero elements in A are 6 while
the total number of elements in A is 16. In general for an
(m.n.k) binary CC, the matrix A consists of 2kx2K elements,
of which at maximum 2¥x2%n are non-zero. The ratio is
approximately
1/(2k ™).

The matrix A can be constructed in as systematic manner
as follows:

A(,NS(i,j)) = OP(i,NS(i,j)) ; i=2 NST, j=1 -NIN
and

X, (NS(Lj)) = OP(1,j); j=2 = NIN.
4.3. Minimum free distance calculation.

It is required to calculate the least power of D in the
transfer function T(D). In order to perform computer
calculations, we substitute for D the value 2 in the matrices
A and X, thus, '

1000 /0400/[0400[" 0400
010000220022 (0022
(I'A)-l“ * + + S
001001000100/ 0100

0001/ 0022/|0022] 0022
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1000/ /0400|0088 (0866
0100/ (0022|0244 0422
+ + + +...
0010 (0100|0022 /0244
0001 0022|0044 0422

(I1-A)'=

and X, is [0 4 0 0.

Now taking only two terms of the expansion, i.e. [+A,
gives x; = 0.

Taking three terms gives x; =32 which is 25, the equivalent
of D°. Thus dg, for this code is 5.

However, there are some cases in which the matrix A
needs to be raised to a power more than two to give a
correct result. Consider another (2,1,2) CC with the
following matrices A and X .

0200
0042
0200
0012

o N O O

In this case, the expansion up to A? gives the value

x;=16, while it gives the value x;-8 if the expansion is
truncated after A3. Thus we must take in consideration not
to truncate the infinite series unless we obtain a
non-decreasing value of x;. Extensive computer simulations
showed that if x has non-decreasing values for two
successive iterations, it will not decrease any more.

5. PROPOSED SYSTEMATIC METHOD FOR MIN
FREE DISTANCE CALCULATION.

A systematic method for calculating dg. consists of the
following steps:

1. Given a (m,n,k) CC, construct the NS matrix.

2. Generate all possible m output connections (their number
is 20,

3. Discard all output connections that constitute a
catastrophic code. Any method can be used to test
whether a given code is catastrophic or not. The efficient
technique for detecting a catastrophic (m,n,k) CC that we
have previously presented[m is recommended.

4. Calculate the OP matrix for each output combination.

5. Use the NS and OP matrices to form the sparse matrix
A and the vector X, corresponding to the transfer
function T(D).

6. Calculate the powers of the matrix A and each time
calculate AX | until the value of x; does not decrease any
more.

7. dge, for that code with the specified output connections
is calculated by the expansion [1-AT! X,

8. Repeat for all output combinations at step 4.
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9. The minimum free distance of the code is the least dg,,

obtained in the cycle of steps 4 through 9.

Table II. The number of catastrophic for CC of different
rates and constraint lengths.

Code Catastropbic Non Catast. Total Nuamber Ratio

(2.7 @) 12 16 28 0.429
€2, Vo kRl 56 64 120 0.467
(4,1, 4} 240 156 436 0.484
). B8 992 102¢ 2016 0.492
2,1, & 4032 4096 8128 0.49¢
£2: 14508 16256 161384 312640 0.498
o P 65281 65536 130817 0.499
(¢ e 261638 262144 523782 0.500
t2,1,10) 1047580 1048576 2096156 0.500
(2,1.11) 4192376 4194304 8386680 0.500
2, 16773620 16777220 33550830 0.500
(21,80 67102690 67108860 134211600 0.500
2., & P 64 84 0.238
(31,00 168 512 680 0.247
(3.1, 4) 1360 4096 5456 0.249
131, %) w0912 12768 43680 0.250
£330 8Y 87360 262144 349504 0.250
130 ) 699008 2097182 2796160 0.2%50
£330 .1 5592320 16777220 2236954C 0.250
€351 790 44739070 134217700 178956800 0.250
(3.1,10) 357913700 1073742000 1431655000 0.250
(3 10 2863310000 8589934000 11453250000 0.250
(3. BT 22906490000 68719480000 91625970000 0.250
(4,1, 2) 30 156 0.105
(4,1, 3 420 4096 4516 0.093
(6.7, 4) 6120 65536 71656 0.085
(P8 P 92752 1048576 1141328 0.081
(4,1, 6) 1441440 16777220 18218660 0.079
(4,1, 7) 22717760 2684135500 291153200 0.078
(6,1, 8) 360704700 4294968000 4655672000 0.077
(4.1, 9) 5748970000 68719480000 74468450000 0.077
(4,1,10) 91804820000 109951 1191316 0.077
(4,1,11) 1467446000000 175921 190596 0.077
(€,1,12) 2346 28147 304942 0.077
(5,v, 2y 42 1024 1066 0.039
(5.1, 3 9z4 32768 33692 0.027
(5.1, 4) 23256 1048576 1071832 0.022
3. 2 649264 33554430 34203700 0.019
(5.1, 6) 19315300 1073742000 1093057000 0.018
9.1, %) 595205500 34359740000 34954950000 0.017
(5,1, §) 18684490000 109951 1118196 0.01?
5. 1.0 592143700000 351843 357765 0.017
.. 1885671 1125 1144757 0.016

6. RESULTS AND DISCUSSION

The method described above is based on a computer
search. However this search is minimized by first excluding
all catastrophic codes using the proper technique presented
in the our paper!”l then proceeding to the matrix
construction and multiplication steps. In Table II we present
a list of the number of catastrophic codes for selected CC.
The ratio of the number of catastrophic codes to the total
number of possible CC is about 50% for rate 1/2, 25% for
rate 1/3, 7% for rate 1/4 and 1% for rate 1/5. It is useful to
know from the beginning that all the codes having even
decimal equivalents of all the generator polynomials are
catastrophic. Also, for the special case (m,l1,k), if each
adder in the encoder has an even number of connections, the
code is catastrophic. Thus, it is very useful to discard all
catastrophic codes before attempting to calculate dg.,
especially for rate 1/2 CC. It should be noted that the
calculation of dg,. for an (m,n,k) CC is equivalent to
calculating dg,., for a (m,1,n+k-1) CC.

There is also a remarkable reduction in the total number of
computations required for matrix multiplication. Instead of
performing additions and multiplications of order n; to
multiply two arbitrary matrices of order n, the matrix A,
being a sparse matrix, requires much less effort for
multiplication. However the resultant matrices A,,A; ,..tend
to lose this property. Fortunately, the number of times A
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should be raised to calculate dg,.. is relatively small.
Extensive computer search showed that the matrix A needs
" not to be raised to a power more than 2 or 3 in almost all
cases for the calculation of dg... Table III lists the best
codes for selected systematic and non systematic CC. Output
connections are listed in their decimal form. It should be
noted that making a CC systematic reduces the maximum
possible distance for a system constraint length and rate.
However, its advantages are that no inverting circuit
(decoder) is needed for recovering the information sequence
from the codeword and that the encoder realization requires
fewer connections as compared to non-systematic codes.
Our results are in agreement with previously published
res“lts[ll,lZ,lﬂ_

Table III. The best CC and their relative dg..
a. Best Nonsystematic CC.

REFERENCES

[1] J.L. Massey, "Threshold Decoding”, Res.
Monograph 20, Cambridge, Mass. MIT press, 1963.

[2] E.R. Berlekamp, "Notes on recurrent codes”, IEEE
Trans. Info. Theory, Vol. IT-10, pp. 257-258, July
1964.

[3] K.J.Larsen, "Short CC with maximal free distance
for rates, 1/2, 1/3 and 1/4", IEEE Trans. Info.
Theory, Vol. IT-1, pp. 1371-372, May 1973.

[4] L.R. Bahl, C.D. Cullum, W.D. Frazer and
F.Jelinek, "An efficient, algorithm for computing free
distance”, IEEE Trans. Info. Theory, Vol. IT-18, pp.
437-439, May 1972.

[5] K.J. Larsen, "Comments on an efficient algorithm for
computing, free distance”, IEEE Trans. Info. Theory,
pp- 577-579, July 1973.

[6] J.L. Massey and M.K. Sain, "Inverses of linear
sequential, circuits”, JEEE Trans. Computers, Vol.
C17, pp. 330-337, April, 1968.

(7]

J.P. Odenwalder, "Optimal Decoding of CC", Ph.D.
Dissertation, Dept of systems Sciences, School of

cc d‘r" Connections in decimals

2,1,4}) S 5:; T

12,1,3) o 13, 15

(2.1,4) 7 19, 29

{2 0.:5) 8 43, 61

(2,%,8) 10 91, 121

$(2,1,7; 10 167,249

t2,1,8) 12 369,491

{3,1.2} 8 T B

(3,1,3) ‘0 19; 3% 18

13,1,4) 12 21, 37, 33

3.,1,5) 13 35, 43, o1

3,1.6) 14 91, 117, 121

EIRIES 16 149, 216, 247

i3, &, 2) 3 6,2 2,4 6.4

1.2,33 4 6.1 2.4 &,

3. 2,43 S 7, & 1.5 1#%,3

3,259} ° 48,12 24,32 56,60

3,2,6) 7 38,24 24,52 52,60

3.2; %) -} 48,14 28,38 44,860
p. Best Systematic CC.

cC d Connections 1in decimals

i1 rec

§a, V.. 2% 3 3

{2y 1,:3) 3 - g

£2,%,4) 4 p I L

(2. %a9) 4 11,23

(2,1,6) 5 4389

(2,1, 7) 5 43,55

(2,1,8) ® 59,103

1300 g2 4 , 3

(3,1,3} S 3.5

(3,°.4) & 3.3

(3515 7 Y9129

3.3, 6) & 7. 45

3,4,7 9 71,49

7. CONCLUSION

The present method is efficient as compared to the
traditional approach to derive dg,., form the transfer function
as described in Section 3. Our systematic algorithm can be
easily programmed on a digital computer to calculate dg..
The reduction of the number of calculations makes it
possible to calculated dg .. for any (m,n,k) not restricted to
short constraint lengths.

Alexandria Engineering Journal, Vol. 32, No. 2, April 1993

Engineering and Applied, Sciences, UCLA, 1970.

[8] E. Paaske, "Short Binary CC with maximal free
distance for, rates 2/3 and 3/4", IEEE Trans. Info
Theory, Vol. IT-20, pp. 683-689, Sep 1974.

[9] D.G. Daut, J.W. Modestino and L.D. Wismer,
"New Short constraint,length CC construction for
selected rational rate”, IEEE Trans. Info. Theory,
Vol. IT-28, pp. 793-799, Sept. 1982.

[10] P.J. Lee, "Further Results on Rate 1/N CC
Construction with, minimum SNR criterion", /EEE
Trans. Comm., Vol. COM34, pp. 1396-399, April
1986.

[11] B. Sklar, Digital Communication Fundamentals and,
Applications, Prentice Hall, Englewood Cliffs, NJ,
1988.

[12] A.J.Viterbi and J.K.Omura, Principles of Digiral
Communications and Coding, Mc-Graw Hill, 1979.

[13] S. Lin and D.J. Costello, Error Control Coding,
Prentice Hall, NJ, 1983.

[14] A.J. Heller, "Short Constraint Length CC", Jet
Propulsion, Laboratory California Institute of
Technology, Pasadena, CA, Space Program Summary
37-54, Vol. 3, pp.171-174, December, 1968.

[15] G.C.Clark and J.B.Cain, Error Correction Coding for
Digital Comm., Plenum Press, NY, 1981.

[16] A.M. Michelson and A.H. Levesque, Error Control
Techniques for, Digital Communication, John Wiley
and Sons, NY, 1985.

[17] Y.Z. Boutros, G. Fiani and E. Looka, "An Efficient
Technique for, Detecting Catastrophic CC", Submitted
to Alexandria, Engineering Journal, Faculty of
Engineering, Alexandria University.

D 83



