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ABSTRACT

The equations of magnetohydrodynamic unsteady free convection boundary layer flow past an infinite
vertical plate for one-dimensional problems are cast into matrix form using the state space and Laplace-
transform techniques. The results obtained can be used to generate solutions in Laplace-transform domain
to a broad class of problems in magnetohydrodynamic free convection flow. The technique is applied to
a heated vertical plate problem and to a problem pertaining a plate under uniform heating. The inversion
of the Laplace transforms is carried out using a numerical approach. Numerical results for the
temperature, velocity and skin friction distributions are given and illustrated graphically for both

problems.
INTRODUCTION

The unsteady laminar free convection flow has been
studied by many authors. Nanda and Sharma [1]
studied free convection laminar boundary layer flows
from a vertical flat plate when its temperature oscillates
in time about a constant non-zero mean.

Soundalgekar, Patel and Pop [2] have solved
magnetohydrodynamic unsteady free convection one-
dimensional flow past an infinite oscillating vertical
plate.

Soundalgekar [3] and Megahed [4] have solved few
problems on unsteady free convection flow in the
presence of a magnetic field. Mishra and Mohapatra
[5] have solved magnetohydrodynamic unsteady free
convection flow past a vertical porous plate with
variable suction.

In most of these attempts the unknown quantities
(velocity components and temperature) were assumed
to be oscillating functions. This assumption facilitates
the solution of the problem rendering it to an ordinary
differential equation without time.

In the present paper the state space approach is
developed for magnetohydrodynamic unsteady free
convection past an infinite vertical plate. This approach
enables one to use the methodology of modern control
theory in dealing with problems in fluid dynamics.
This method was developed Bahar and Hetnarski [6] to
deal with coupled thermoelasticity problems. The
solutions obtained in a closed form in the Laplace

domain. The inversion of the Laplace transform is
carried out using a numerical technique [7]. The
resulting formulation is applied to two different
problems to show how this approach is applied to
concrete problems. The first deals with a heated
vertical plate problem, while the second deals with a
problem pertaining a plate under uniform heating.
Numerical results are presented.

FORMULATION OF THE PROBLEM

Let us consider the unsteady one-dimensional flow of
a fluid of density p’, viscosity u, and electrical
conductivity ¢ occupying the region y’ = 0, where y’
axis is taken perpendicular to the infinite, vertical
plate. A magnetic field of uniform strength is applied
transversely to the direction of the flow (to the plate).
We assume that the magnetic Reynolds number of the
flow is small enough so that the induced magnetic field
can be neglected. The influence of the density
variations with temperature is considered only in the
body force term. In the energy equation, terms
representing viscous and Jole dissipation are neglected
as they are assumed to be very small in free convection
flows. We note that since the plate is infinite in extent
conditions depend upon y and the time t only, and that
the velocity vector has components {u(y,t),0,0}. With
this assumptions the boundary layer equations that
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govern the unsteady one-dimensional, free convection,
flow through a viscous incompressible fluid bounded
by an infinite, vertical, plate in the presence of a
magnetic field [2] are
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In the above equations t’ is the time variable, B, is
the applied magnetic field strength, g is the
acceleration due to gravity, B* is the coefficient of
volume expansion, A’ is the thermal conductivity, C’
is the specific heat at constant pressure, T’ is the
temperature in the boundary layer, and T’ , is the
temperature far away from the plate.

Let us introduce the following non-dimensional
variables
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where T’ is the temperature at the plate.
In view of transformation (3), (1) and (2) yield:
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To simplify the algebra, only problems with zero
initial conditions are considered.

Taking the Laplace transform with parameter s
(denoted by a bar) of both sides of equations (4) and
(5), we arrive at

We shall choose as state variables the temperature
increment 6, the velocity component u and their
gradients. Equations (6) and (7) can be written as
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The above equations can be written in matrix form as
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Equation (12) can be integrated by means of the matrix
exponential to yield

V(ys) = exp[A(s).y] v(0s) , (13)

following the development given in [8].

To determine the matrix exponential explicitly, it is
observed that its Taylor-series expansion terminates
with the term containing the cube of the matrix A on
account of the Cayley-Hamilton theorem. This is due
to the fact that the characteristic equation
corresponding to the matrix A in equation (12) is given

by
kK*-kK*M + s + Ps)+ Ps (M+s) = 0, (14)

where k is a characteristic root. The Cayley-Hamilton

theorem states that the matrix A satisfies its own
characteristic equation in the matrix sense. Therefore,
it follows that

A*-AZM + s+ Ps) + Ps M+s) I = 0,(15)

Equation (15) shows that A* and all hlgher powers of
A can be expressed in terms of A?, A and I, the
unit matrix of order 4. The matrix exponentlal can now
be written in the form

exp[Ay]=a (y,9)] +a,(y.8) A(s) +a,(y,8) AX(s) +a,(y,8) A%(s) (16)

The scalar coefficients of equation (16) are now
evaluated by replacing the matrix A by its
characteristic roots +k; and +k,, which are the roots
of the biquadratic equation (14), satisfy the relations

k2 + ky?> = Ps+M+s, (17a)

k2 k,? = Ps(M+s). (17b)
This leads to the system of equations

expk;.y) =29+ a k; +a,k? + a k.’ ,
exp(- ky.y) = ag-a, k; + 3, k? - a3 k;°
expky,.y) =35+ a; k, + 32k22 + a3 k23 :

exp(- ky.y) = a9 - a; ky + 3, ky? - a5 k,°

The solution of the above system is given by
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Substituting the exprmsnons (18) into equation (16) and
computing AZ, and A3, we obtain after some lengthy
algebraic mampulatlons

exp [A(S))’]=L(Y,S)=[L,J()',S)],i,j= 1’2)3)4~ (19)

where the elements L; ;(v,s) are given by
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sinhk, y
U ’
L31 = kl Sinhkl y ’

It should be noted here that we have used equations
(17a) and (17b) repeatedly in order to write these
entries in the simplest possible form. It should also be
noted that this is a formal expression for the matrix
exponential. In the physical problem o = y= 0, we
should suppress the positive exponentials which are
unbounded at infinity. Thus we should replace each
sinh(ky) by - %4 exp(-ky) and each cosh(ky) by
4 exp(-ky).

We return now to system (12) whose formal solution
can be written in the form

v(y,s) = L(y,s) v(0,s) . (21)
APPLICATIONS
(1) A HEATED PLATE PROBLEM

We shall consider the free convection flow of an
electrically conducting, non magnetic fluid occupying
a semi-infinite region y=0 of the space bounded by
an infinite vertical plate (y=0), with the condition

u(0,t)=0 . (22)
We assume that temperature of the form
6(0,t)=6,H(t) , (23)

is applied to the plate at time t=o0, where 6, is a
constant and H(t) is Heaviside unit step function. All
initial conditions are assumed to be zero.

We now apply the state space approach described
above to the same problem. The two components of the
transformed initial state vector v(0,s) are known,
namely,

5<0,s>=% , 24

u(0,s)=0 . (25)

In order to obtain the remaining two components
0’(0,s) and 6°(0,s), we substitute y=0 into equations
(21) and (20). We obtain a system of two simultaneous
linear equations whose solution is

u’(0,s) = gt |
(kl +k2)

9/(0,s) = 0,(Ps + ki k)
s(k; +K,)

Equations (17) were used again to simplify the forms
(26) and (27). Finally, we substitute from (24)-(27)
into (21) to arrive at

E(y,s)=m:-lk-‘i) . @

-0,G[exp(-k;y)-exp(-kyy)]

u(y,s)=
s(k; -15) 29)

(II) PLATE UNDER UNIFORM HEATING
We consider magnetohydrodynamic free convection
flow of an electrically conducting, non magnetic fluid

past a heated infinite, vertical plate, at whose surface
the heat flux is uniform q, with the conditions

8/(0,t) = -qH® (30)

u(0,t) =0 . @31)

The two components of the transformed initial state
vector v(0,s) are known, namely,
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6%0,5)=-3
s (32)

G(O,S)=O . (33)

To obtain the remaining two components u’(0,s) and
8(0,s), we substitute y=0 on both sides of equations
(21) getting a system of linear equations whose solution

gives

qG

—/ _
O ey '
= B Q(k[+k2)

¢(0.5)» TR G5)

Substituting from equations (32)-(35) into the right
handside of equation (21) and performing the matrix
multiplications, we finally obtain the solution of the
problem in the Laplace transform domain as

5(y,s)=s%exp(—kly) . (36)
1

qG
s(Ps+k k, Xk,

ay,s)=- -k,)[“p(-k‘” -exp(-ky;y)]. (37)

INVERSION OF THE LAPLACE TRANSFORM

In order to invert the Laplace transforms in the above
equations we shall use a numerical technique based on
Fourier expansions of functions.

Let g(s) be the laplace transform of a given function
g(t). The inversion formula of Laplace transforms
states that

c+i100
gt = -2-'; 't () ds

c-10

where ¢ is an arbitrary positive constant greater than

all the real parts of the singularities of g(s). Taking

s=c+iy , weget
ect

g =

(- -]
I eltY g(c+iy) dy
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w

this integral can be approximated by

et (%2 :
g(t)=;— Y eiktAyg(c+ikAy)ay .
¥k :

= - Q0

Taking O y = «/t; , we obtain

ct i :
80= 2 [’A§(0)+Re[2 e"‘“"‘é(wikr/q)H
1 k=1

For numerical purposes this is approximated by the
function :

5 N
Bx(t eT {v.i(cw P> "™ gl +ikm/ty) ] (38)
=1

where N is a sufficiently large integer chosen such that

t .
e® Re eert/tl

. E(c+iN‘r/tl)} E e |,
1
and € is a preselected small positive number that
corresponds to the degree of accuracy to be achieved.
Formula (38) is the numerical inversion formula valid
for 2t; 2t=0 [7]. In particular we choose t = t; ,
getting

" N
g,(t)=°Tt[‘b§(c) +R¢{ 3 (-DEg(c+ikmn/t) ] .(39)

k=1

CONCLUSIONS

In this paper the state space approach is adopted for
the solution of one-dimensional problems of
magnetohydrodynamic unsteady free convection flow
past an infinite vertical plate. The technique is applied
to a heated vertical plate problem and to a problem
pertaining a plate under uniform heating. The inversion
of the Laplace transforms is carried out using a
numerical approach. The effects of the magnetic field
and the Prandtl number on flow characteristics have
been studied and are illustrated graphically. Figures (1-
4) represent the first problem while Figures (5-7)
represent the second one.
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Figure 2. Temperature distribution.
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Figure 4. Heat flux against M.
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Figure 6. Temperature distribution.
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Figure 7. Skin friction against M.

Figures (1) and (5) show that the velocity at any point
in the fluid decreases as M, the magnetic field
strength, increases. A similar effect is observed as the
Prandtl number, P, increases. We observe from
Figures (2) and (6) that the temperature at any point
decreases as P increases. It is to be noted from Figures
(3) and (7) that the skin friction 7 decreases as M
increases and also as P. It is also seen from figure (4)
that the heat flux decreases with an increase in P and
the effect of increasing M is to decrease the heat flux
slightly.
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