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ABSTRACT

A finite element model, for turbulent flow over a fence, based on a penalty function approximation
and a Petrov-Galerkin formulation which retains high accuracy for fully irregular meshes, is
presented. The model is applied to the simulation of turbulent flow of an incompressible fluid over
a fence located in a closed channel. The results are compared with reported experimental data.

INTRODUCTION

The separation of turbulent flow due to abrupt
change in the geometry of a solid boundary is quite
a common problem and is a basic one for many
engineering devices such as cooling fins, valves,
buildings and shelter fences. The flow field
produced by a fence is highly complex and consists
of several regions with different characteristics. The
recirculation zone behind the fence, the free stream
flow, the turbulent free shear layer between these
two regions and the boundary layer at the wall. The
numerical solution of the governing equations
presents a difficult challenge and has been addressed
by many investigators in the past, [1-3].

The main objective of this paper is to describe a
two-dimensional Petrov-Galerkin finite element
model based on bilinear rectangular elements for the
solution of flow problems in arbitrary geometries. In
principle, the model can be directly extended to
three spatial dimensions. To show the capabilities of
the model, it is applied to the simulation of
turbulent flow of an incompressible fluid over a
fence located in a closed channel. The results are
compared with reported experimental data.

THE MATHEMATICAL MODEL

We consider steady two-dimensional flow, with
turbulence represented using an isotropic turbulent
viscosity hypothesis. The governing equations are the
Navier-Stokes equations of conservation of linear
momentum; the mass conservation equation for
incompressible flow and the transport equations for
turbulence kinetic energy and turbulence dissipation
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rate. These are, in Cartesian coordinates,
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where u and v are velocities in the x- and y-
directions, respectively, p is the pressure, v is the
kinematic viscosity, p is the density, k is the
turbulence kinetic energy, € 1is the rate of
dissipation of turbulence energy, and C,;, C,, 0, and
o, are constants. The kinematic viscosity v is given
by

TR
P

(6)

v=

where p is the molecular viscosity and g, is the
turbulent viscosity. Using the k-¢ turbulence model,
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[2], we have:

C,k’
- L (7)

where C’ is a constant. The function G in (4) and

(5) is defined as:
2EHE5)) w

o

Equations (1)-(5) are assumed to be valid for all
points in a domain R in the x-y plane with
boundary dR. For simplicity of presentation, we
assume that only Dirichlet-type boundary conditions
are imposed on OR. Other types of boundary
conditions can be directly incorporated by the
model.

au ov
ay ax

PENALTY FUNCTION APPROXIMATION

The penalty function approximation is especially
attractive in the solution of confined recirculating
flows and is described in [4,5]. Following the work
of Fukumori and Wake [6], we write

p'p.— gt (9)

Jdu _@1)
ox 9y
where p, is the static component of pressure and 4 is
the penalty parameter, assumed to be large. Equation
(9) incorporates the basic fact that, under conditions
of no motion, the pressure must be the static
pressure, a condition which is not satisfied by
penalty formulations found in the literature that
assume p, =0. u and v in equation (9) represent some
approximation of the exact solutions hence
(0u/ox + dv/dy) equals some very small residue. A
full discussion can be found in [6]). As a result of the
penalty approximation, the pressure and the mass
conservation equation are eliminated from the
system of equations (1)=(5) and the governing
equations become:
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Once the velocity fields are known, the pressure
variable is calculated a posteriori if desired by

solving the equation;
) d ( ., v)
oy ax dy

(a;‘ ay) [3x
Over the region R, subject to homogeneous

Neumann conditions along the boundary dR; i.e.
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where (n,, n,)‘ is the unit vector normal to the
boundary and pointing in the outward direction.
Because only Neumann boundary conditions are
given, the solution of (14) subject to (15) is
determined only up to an additive constant. In order
to obtain a unique pressure field, one more condition
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must be imposed. This is usually done by setting the
pressure at one point in the domain equal to a
reference pressure, i.e.

P(x,.Y,)=p, (16)

where (X,, Yo) is a point in R and p, is a prescribed
value.

PETROV-GALERKIN FORMULATION

We use a Petrov-Galerkin formulation based on
bilinear quadrilateral elements that has been
developed from the work of Kelly et al [7] and
Heinrich [8,9]. Assume that the domainR =R UJR
has been partitioned into a number of quadrilateral
elements e whose interiors are sets denoted by ey
and the boundaries by dey so that
e ,=e,Ude, and e N de_ =0, the empty set.
The partition also satisfies
e,Ne =0 ifi*j and U_e.=R. We will need
the following definitions:

(i) We denote by H!(R) the space of functions
in R that are square integrable over R,
together with their first partial derivatives.

(ii) We denote by H:,(R) the subspace of
functions of H'(R) that vanish on the
boundary SR

(iii) We define the test functions:

T=U+P,,V=U+P,, W=U+P, (17)

Where U is in H)(R) and P, P, and Pj are
piecewise continuous functions, possibly
discontinuous across the boundaries de, of the
above—defined partition such that P;, P, and ‘3 go to
zero as the sizes of the elements in the partition
become small.

The weak formulation for (10)-(13) can now be
stated as: find a velocity vector field (u, v)', a scalar
turbulence kinetic energy k and a scalar rate of
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dissipation of turbulence energy &, where u,v,k and ¢
are in H\(R) such that:
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for all test functions T,V and W of the form (17),
where m ranges over the number of elements in the
partition. A more detailed discussion of this type of
weak formulation can be found in Hughes el al [10].

The weak formulation for the pressure equation
(14) is the standard formulation for second-order
elliptic operators: Find a pressure field p in H'(R)

such that p satisfies (15) and
(Er-malase (e s)atn e
’ (22)

is satisfied for all P in H'(R) such that P(x,,y,) = 0.

It should be noticed that the computation of the
velocity field using the penalty function formulation
does not require the explicit calculation of the
pressure. Hence, (22) is solved only if the pressure
field is needed. Also, it does not feedback into the
solution of the Navier-Stokes equations, so any
inaccuracies in the pressure solution will not affect
the development of the flow. Again, to obtain the
pressure from (22) requires the inversion of the
Laplacian operator, which can be done very
efficiently, compared with the cost of retaining the
pressure in the momentum equations in a standard
mixed formulation.

The discrete Petrov-Galerkin approximation is
obtained by approximating the functions u,v,k and ¢

in expressions (18)-(21) over the subspaceH.(R)
such that:
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where j ranges over the number of nodes and u;, v;,
k; and g denote the values of the dependent
variables at the nodes. The functions ¢,(x,y) are the

well-known bilinear isoparametric shape functigns
[11]. The component U of the test functions (17) is
defined node-wise equal to the shape functions, i.e.

Ufx,y) =d;(x,y) for allj (24)

The perturbation functions Py, P, and P; are given
by:

a6, 9
P,’(x,y)=ri(u£1 +v—aL:1 ) i=1,2,3 (25)

where
a.h

L, cIWI (26)

JW| is the magnitude of the local velocity W, and h
is an average element length whose definition is

h=Ax|cosB|+Ay|sinb | (27)

where Ax and Ay are the dimensions of the rectangle

and O is the angle of the velocity vector W to the
positive x-axis, for more details see [4]. The

parameters a, are given by:

1
a,=cothy, - — (28)
) Yi
Here, '{’- is the element cell Reynolds number
defined {is
'i;%‘“
_IWih 2
Y, 2] (29)
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It should be noticed here that the Petrov-Galerkin
treatment depends on physical parameters for each
operator, and therefore three independent
parameters, a;,a, and a; are calculated at each
element.

SOLUTION OF THE NON-LINEAR SYSTEM

The procedure described in the previous section
leads to a system of non-linear equations that we
write as:

Aw+F (wke) = 0 (32)
Bk +F,(w)k,e) = 0 (33)
Ce +F;(w)k,e) =0 (34)
where the vectors w=(uj,Vi,Uz,Va,........ ), k=(k;,

k,......)' and e =(e,, e,,...)" contain the nodal values

of velocities, turbulence kinetic energy and rate of
dissipation of turbulence energy respectively. The
matrices A,B and C contain the coefficients from the
penalty and momentum as well as k-¢ model. The
vectors F;,F, and F; are the non-linear terms.

The system of equations (32-34) is solved
sequentially using a basic Newmark algorithm such
as presented by Hughes et al.[10]. The algorithm is
described as follows:

Stepl. Predict initial guesses for u,v,k and ¢

Step2. Form the residual vector AF;

Step3.  Solve for incremental corrections to the
predicted e

Step4.  Correct the dissipation rate ¢

Step5. Form the residual vector AF;

Step6.  Solve for incremental corrections to the
predicted k

Step7.  Correct the turbulence kinetic energy k

Step8. Form the residual vector AF;

Step9. Solve for incremental corrections to the
predicted velocities w

Stepl0. Correct the velocities w

Stepll. Check for accuracy, if the desired
accuracy has not been achieved, repeat
the process starting from step2.

NUMERICAL EXAMPLE

The proposed model is applied to the simulation of
turbulent flow of an incompressible fluid over a
fence located in a closed channel Figure(l). The
boundary conditions are:

(i)  For the inlet boundary, u=0; v=0; p=0;¢e =¢_
and k=k,

(ii) For the out boundary, ? =0; v=0; p=0; and
x

e=k=0
(iii) For the solid boundary, u=0; v=0 while
w 3
k=W,3(C,C,? and e=—T1
: (xy)

T
where C,=0.5478; Cp=0.1643; x=0.41;W,=(—)**
p

and T, is the wall shear stress. The constant

parameters in the turbulent model are recommended
in [12] as: Cy=1.44, C;=1.92, 0;=1.0 and o,=1.314.
The flow pattern has been studied with Reynolds
number v,=600, 2000 and the fence non-
dimensional height S/H=0.25. The stream lines
pattern for y,=600 and y,=2000 are shown in figure
(2) and figure (3) respectively while figure (4) shows
the velocity profiles at several x/s locations. It is
clear, from these patterns, that the flow approaching
the fence is deflected by the build-up of the
pressure as the fluid impinges on the front face. The
adverse pressure gradient ahead of the fence acts on
the slower moving fluid in the thin floor boundary
layer. Deceleration of the flow at the front face and
its deflection around the top of the fence causes a
zone of high positive pressure particularly near the
centre of the front face where the flow approaches
stagnation. The existence of a vertical gradient of
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location of the maximum surface pressure nearer to
the top of the fence because of the higher dynamic
pressure associated with faster moving fluid near the
top of the fence. For the downstream region, the
fluid forms a large recirculation zone characterized
with low velocity and pressure. In Figure(5), a
comparison between the calculated velocity profiles
and the reported experimental data [13] is illustrated.
An excellent agreement is observed.
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Figure 1. Geometric representation of the fence.

Figure 2. Streamlines of the flow field for
Reynolds number=600 and S/H= 0.25.

Figure 3. Streamlines of the flow field for
Reynolds number=2000 and S/H= 0.25.
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Figure 4. Velocity vector field for Reynolds
number=600 and S/H=0.25.
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Figure 5. Axial velocity component: Comparison
between predictions and experimental data (o
experimental; — prediction), for Reynolds
number=600 and S/H=0.25.

CONCLUSION

We have presented a finite element method for
turbulent flow that has been shown to be robust and
efficient in practical calculations. The method is
based on a penalty function approximation and a
Petrov-Galerkin formulation. As an illustration, it
has been applied in the simulation of turbulent flow
of an incompressible fluid over a fence located in a
closed channel. The results were in good agreement
with reported experimental data.
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