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ABSTRACT

A general finite element technique, based on the Lagrangian approach, is presented for the non-
linear analysis of spatial framed structures subjected to static loads. The non-linearity is due to finite
deformation (large rotation is included) and elasto-plasticity. A new finite element model is
developed in which the axial displacement component is represented by a hermite polynomial and
a more exact strain model is also presented which includes the effect of large rotation. The governing
matrices are integrated using Gauss and Trapezoidal rule integration schemes. A comparative study
has been made between numerical results of the proposed method and other published solutions
which indicates that the proposed technique is very effective in all problems solved.

1- INTRODUCTION

The use of the incremental variational principles
together with the finite element method and a
sophisticated computer machine make it possible to
formulate general finite element techniques for the
non-linear analysis of framed structures and to
include both types of nonlinearities (geometric and
material nonlinearities).

In those techniques; fundamental incremental
equilibrium equations of the problem are formulated
using either the Eulerian approach in which all
quantities are referred to the deformed configuration
[Kassimali (1), Kam (2) and others], or the
Lagrangian approach in which all quantities are
referred to the initial configuration [El-Zanaty and
Murry (3), Cichon (4) and Keck (5)].

Available finite element techniques, for the
analysis of nonlinear systems which are based on
Lagrangian approach are restricted to the cases of
small angles of rotation. The present work is a trial
to overcome this deficiency. Therefore, a new finite
element model is developed, in which the axial
displacement component is represented by cubic
polynomial (Hermite polynomial) as the transverse
displacement components, and a more exact strain
displacement relations are presented which include
the effects of large rotation.
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A computer program has been written which
includes the above effects Several
examples have been solved and the results are
compared with other published solutions.

numerical

2- ASSUMPTIONS

The following assumptions in the derivation of the
strain displacement relations are made:

1. The member length is much greater than the
cross section dimensions.

2. Plane sections, which are normal to the member
x-axis before deformation, remain plane and
normal to the deformed member x-axis after
deformation (i.e. shear deformation is excluded).

3. Cross sections are doubly symmetric and constant
throughout its length (prismatic members).

4. Angles of twist are assumed small and therefore,
warping effects can be neglected.

3- FINITE ELEMENT MODEL AND STRAIN
DISPLACEMENT RELATIONS

Since the axial displacement component, U, is
represented by cubic polynomial as the transverse
displacement components (Vo W;) and the

C 513



ABDEL RAHMAN, EL-MENOUFY, EL-KATT and ABOU EL FATH: Large Displacement Analysis of Structures

displacement derivative Uy’ is also used as a nodal
degree of freedom as in Vy' and Wy, see Figure (1),
the displacement function components (Ug, Vg, Wy
and 6,) can be written in terms of the coordinate
variable, X, and the nodal degrees of freedom (q;——>
q14), as follows:
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where [N] is the shape function matrix, which has
the following non-zero components:

Npi = Ngz=Naz=1-35%+28°
Nis=Nyg=N3;=L*(S-28+85}
Nig = Nog = Nayo = (38 - 287) (3)
N1z =Nzi3 =Ny =L * (-8%+8%
Ngys=(1-8), Ng1j3 =8
and, S = X/L
The relations between the angles of rotations (6,,
6,) and the derivatives of the displacement
components (U, Vo, Wy) can be obtained if, as
shown in Figure (2), two arbitrary infinitely near
points A and B are considered on the x-axis of a
frame element before deformation and due to

deformation they move to A’ and B
From the geometry of Figure (2):

Wo=—(1 +U0’)tan0y
Vo =(1+Uj)tan 6, (4)
From eqns. (4), the relations between the

displacement vectors {q} and {q}, defined in Figure
(1), can be written as:

U=q q8=3s

©2=3; Q=3
3=q3 Q10 =qy
@w=qs Qqu=4an (5)
e65=3s 4qi2=3n

qe¢ = (1+@s)tan Q¢ qi3 = (1+q;)tanq;;
q7 ==(1+3s)tand; Q¢ = (1 + qq2) tan Q4

Differentiating eqgns. (5), gives the relations
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between the incremental displacement vectors {Aq}
and {AQJ}, which can be written as:

{Aq} = [Ty] {AG} (6)

where the transformation matrix [T;] has the
following non-zero components:

Ti1 =Ty =Ty3=Tys=Tss=1
Tgs = To9 = Tig10 = T1,11 = Tiz12 = 1
Tes = tan &g , T = (1 + s)(1 + tan® )  (7)
Ty,s= -tan &y, Ty == (1+35)(1+ tan® §y)
T13,12=tand13, T1313=(1+312)(1 +tan® §y3)

Tig12=-tan Quq, Trg4=- (1 + Q)1 + tan® ;4)

g = 5

/Iw.»'&
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Figure 2. Spatial centroidal deformation.

Considering a generic material point, a, lies on an
arbitrary cross section, A, its centroid is, O, before
deformation, and due to deformation A, a and O
move to A", a_ and O, respectively, as shown in
Figure (3).

The axes Xxg, Yo and zg are aligned with the axes x,
y and z respectively, while the axes x3, y3 and z3 are
used to define the orientation of the deformed cross
section A”, where y3 and z, are the principal axes of
A’ and x4 is the outward normal to them.

The displacement components of the material
point, ‘a’, (U, V, W) can be expressed in terms of
the displacement components of the centroid, ‘O,
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(Ug, Vo, Wg), using three angles of rotation (6y, 6,,
63), known as the Euler angles, as follows:

U = Ug -83C2 [Chy - 84z] + S, [S1y + Cyz]
V=Vi-y+GICy - Syz] (®)
W =Wo-2+5;5[Cyy - 5;z] + C; [S1y + Cyz]
where:
S, = Sin 8y, S; = Sin 6,, S; = Sin 65

C; = Cos 6, C, = Cos 65, C3 = Cos 63

Figure 3.

The Euler angles (6, 65, 63) consist of a sequence
of three plane rotations about instantaneous axes as
shown in Figure (4), see ref. (6).

Eqns. (8) can be simplified by ignoring the terms
of sine products, i.e. putting

S] 82 L 0, S]S3 = 0, 8253 =0
then:

U=Up-5CCy+85,Cz

V=V -y+GCCyy - G381z %9
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W=We-2+C8,y+C,C2 follows:
The Euler angles (6;, 63) can be expressed in terms U’ = Uy - P{Vo'y - P,Wo2
Vo, Wo) as follows, see Figure (2)
Of (UOv 0 0) V; o vo' ¥ P3U0~y L P491'Z (13)
Sln 92=-W0’/h2! h2 ) le + lJé)2 + woﬂ wl = Wo’ + Psel'y i P6U0~Z
where,
Cos6y=hy /hy h = (1 +Up (10) :
P hl P N 1 P o= hl l _h'l
Ryt B 1 % e g Mt o TR
Sin 63 = Vo' / B3, by = J(1+U? + Vg + Wy hh, b, by b, b
C0503=h2/h3 _h2 A _hl i 11 hf
= T S TIar » N 1 S d
‘o h,” ¢ hz{ h2

Figure 4.

Note that the angle 6, (not shown in Figure (2)) is
the angle of twist, 6,, defined before and is assumed
to be small, then:

Sin 6, = 6,, Cos 6, =1 (11)

substituting eqns. (10) and (11) into egns. (9) yields:
U = U + [-(h1/hzh3)V¢T y + [-Wg'/hp)z(12-1)

V = Vg + [(ho/h3) -1]y + [-(ha/h3) 6z (12-2)

W =Wy + [(h1/hy) ]y + [(hi/hy) -1]z (12-3)

From eqns. (12), the displacement derivatives U’,
V’ and W’ can be written in an approximate form as
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In the spatial frame element, the only non-zero
Green strain components are the longitudinal
component, &;;, and the shear components &, and
€13, which can be written as:

_ooa gt ol ﬂﬂ(«ﬂ)ﬂ(ﬂ ] (14-1)
o 2l ax ox ax

2 dU dvV dUdU gV av dwW W

€= —t—t——+ + (14-2)
dy ox oxdy oxdy ox Oy

26, - W W NN MWW |,
0z Ox Ox 0z Ox &z Ox Oz

If the non-linear shear strain components are
neglected, then eqns. (14) can be written as:

s SHETEE)

du  aw

« AN e oW
&z ox

2e, = 3y .28, =

pog (13)

Substituting eqns. (12) and (13) into egns. (15) and
neglecting terms which contain the squares and the
products of the coordinates y and z, yields:
en=Ug+H(Ug*+Vy*+Wy)#y[-Py(1+Uy)Vo"+P3Vy Uy’

+ PsWo8] + -Pp(1+Ug)Wo" - PyV8" + PsWoUy"]
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2612 = Vo' = P1Vy' + yP3Uq" - zP48 = -zP6,(16)
2¢13 = Wo' - P,Wy' + yPs8” + zPgUy" =~ yPs6/
Eqns. (16) represent the strain displacement

relations considered in the proposed technique.
4-1 Incremental equilibrium equations

The principle of virtual displacements can be
written in a vector form at configuration CN*! as
follows:

f{s"“}T{be""}dV={6q""}T{p""} 17)

v

where, {SN*!} is the 2™ Piola-Kirchhoff stress
vector at configuration CN”, {PN”} is the external
load vector at CN*! and V is the initial volume.

If the following substitutions can be made into egn.
(17):

{SN*=(s N}+{A S} {N*1} ={eN} +{A €}

{Aq™=igM+{ag
and noting that

(BeN1={8Ael (8qND=(8Aq)
then,

[asMTasTYEAAV=6AgT PN (13)
v

The strain increment can be expressed as the
summation of linear and quadratic components, as
follows:

{A€} = {Ae} + {Ah}

or,
Ae, Ae,, Ah,,
2Ae,,| = [2Ae,,| + |2AD,, (19)
24e,,| [24e,| [24h,,

where
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oe,,
Aey=tb, T(AG), bypy=—tt aq

oe
24e,=,,"Ag), b(12)i=2¥1-2

de
24e,,=b,,JMAg), bm,=2—aqf—f (20)

de
Ahu=%(Aq}T[Cu]{Aq}, Comsgoms
i%4;

o€,
dq; dq;

2Ah12=%{Aq}T[Cu]{Aq}, Coippy=2

de
2Ahu-—{Aq}T[C1;]{Aq} C(mu:za%
R |

The derivation of the vectors {by;},{b12} and {b;3}
and the matrices [C;1],[Cy2] and [Cy3] is presented in
ref.(6).

The relation between the strain increment and the
stress increment can be approximated as:

{AS} = [EN){Ae} (1)

where, [EN] is material modulus matrix at CN and is
of the form:

where,

EN = tangent longitudinal modulus at "

GN = tangent shear modulus at ¥

Substituting egns. (19), (20) and (21) into eqn. (18),
and ignoring terms of third and higher orders in
incremental variables (so that a linear equation will
result), leads to:

© 517



ABDEL RAHMAN, EL-MENOUFY, EL-KATT and ABOU EL FATH: Large Displacement Analysis of Structures

[EB b A g3, Aqh+G by (A3 (b, (Ag)
v

GMbTAQ(bIADMV- IS8 BaIC AN
4

2
sisduarciag sisduarciagey ¥
(8 AqTpNY
- [18118 ()T q) +8,138 (b2 (A ) +8,33 (b T AGHAV
v

The incremental equilibrium equations can be
obtained by taking the first variation of equation
(22) with respect to the incremental nodal
displacements, as follows:

JIE X Hb T +G MbpHb T +G N )b 3 THAGIV
' + f [SHICHI+SpICRl+SHICHNAGAY (23
={:,N°l} . f IS, }+8 5tb 31 +8 b, S1dv

wihich gin be writtan i 15 farmy
[kNHAqQ) = (P¥*) - () (24)
where,

[k"J = tangent stiffness matrix at gl

{f N} = internal force vector at CN

The computation of the tangent stiffness matrix
and the internal force vector requires integration
over the volume of the element. In this work, the
integration is performed using numerical integration.
The integration over the cross-section of the element
is performed using the trapezoidal rule, while the
integration over the element length is performed
using Gauss Numerical integration scheme. [ref. (6)].

The element incremental equilibrium equations in
global coordinates at CN, can be written as:

[K"JaQ) = PN} -{BY) (25)

The transformation of the local equilibrium
equations is carried out in two steps. In the first step
a transformation is made from the system of degrees
of freedom defined in Figure (1-a) to the other
system of Figure (1-b), as follows:
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{Aq}=[T,"Ag)
{F)=[T,) ") (26)

[k J=[T,] [k J(T,]

In the second step, a transformation is made using
the conventional linear transformation matrix [T],
which is commonly used in the linear analysis, as
follows:

F-(11" (F)
Q=(11" (g} (27)

(K J=[TT"[K JIT]

The structural incremental equilibrium equations
can be established by using the standard assembly
procedure which is used in the linear analysis, these
equations can be written as:

—N _— —N+1 —N.
[K, KaQl{P }-{F} (28)
where
[K‘N] = the structure tangent stiffness matrix at
cN
{AQ} = the structure displacement increment
vector between CN and CN*1.
{PN*!} = the structure external load vector at CN*!

{FN} = the structure internal force vector at CN
Once eqns. (28) are assembled, the Newton-

Raphson method can be used to obtain the load-

displacement characteristics of the frames.

5- NUMERICAL EXAMPLES

Three numerical examples have been solved to
examine the accuracy of the proposed solution
technique. The first example is a simply supported
beam subjected to a concentrated transverse mid-
span load, P, and an axial load, Q=16 * 10° (lbs), as
shown in Figure (5). The problem has an elastic-
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plastic material with E = 28,985 KSI (200 KN/mm?)
and o, = 40 KSI (0.267 KN/mm?). The beam is
modelled using 4-submembers as shown in Figure(5).
The resulting load-displacement curves are
compared with solutions given by ref.(7) and ref.(8)
these curves are presented in Figure (6).
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00138 t i . H 9.__ o
r {
sru::;.:::n CROSE SEETION sg ;' .
Figure 5.
1000
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1.0 1.3
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Figure 6.

The second example is a cantilever beam subject to
a transverse concentrated load at the free end, see
Figure (7). The beam has a linear elastic material
with E = 30,000 KSI (206.9 KN/mm?. The
convergence of the proposed solution technique for
large displacement only, is tested by modelling the
cantilever with 1, 2 and 4 elements. The results are
presented in Figure (8) along with the solution given
in {ref. (5)). From Figure (8) it is clear that the use

The beam has a linear elastic material with E =
10,000 KSI (68.97 KN/mm?). The problem was
solved by the proposed technique with 4 and 8-
submembers. The resulting load-displacement curves
for large displacements analysis, are compared with
the corresponding solutions given by ref. (9). These
curves are presented in Figure (10).

P.V
e

i {
Figure 7.
-
£..
A
g
5

DISP V (IN)
Figure 8.

CROSS SECTIONM

B |-

b v

of 4 elements yields a solution similar to the elastica
solution.

The third example is a beam curved in the
horizontal plane and subjected to a concentrated
load, P, at its free end as illustrated in Figure 9).

Figure 9.
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LOAD P (LBS)
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@ Martin Ref. (9)
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Figure 10.
6- CONCLUSION

A general finite element scheme based on the total
Lagrangian approach has been presented for the
geometrically and materially non-linear analysis of
framed structures subject to static loads.

In the proposed technique, a new finite element
model has been developed and a general strain model
has been presented in order to include the effect of
large rotation.

A computer program based on the proposed
solution scheme has been written and three
numerical examples have been solved. The numerical
results indicate the effectiveness and accuracy of the
proposed technique in solving small and large
rotation framed structures.
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