A POWER SYSTEM LINEAR DECOUPLE CONTINGENCY ANALYSIS ALGORITHM

M.F. Allam, M.M. El-Geneidy
Elect. Eng. Department, Faculty of Engineering,
Alexandria University, Alexandria, Egypt.

ABSTRACT

M.R. Amin
Elect. Eng. Dept. Faculty of Engineering Studies,
Arab Maritime Transport Academy, Alex., Egypt.

This paper introduces a simple, linear, fast, decouple and non-iterative contingency analysis
algorithm derived form the approximate D.C. loadflow technique. The linear relations between active
and reactive powers injected to system buses and phase angles and magnitudes of nodal voltages of
the system are coupled together to determine the power system state variables after changes in system
network configuration resulting from contingent outages and/or planned switching of lines. The
proposed technique takes into account second order term of changes in system states and parameters
resulting from such contingencies. The drop of these changes in references [1], [2], [3], yields to a
substantial amount of error in their output results, specially for lightly loaded power systems [2]. The
consideration of these terms highly improved final output results of the proposed technique as
compared with any previous technique developed on the same basis.

INTRODUCTION

Automatic contingency analysis is an increasingly
valuable analytical tool in many energy management
system. It is predominantly used to predict steady
state conditions following branch or generation
outages. AC power flow methods have proved to be
dispensable for any kind of steady state analysis in
real time security monitoring owing to the
prohibitive computer time and cost involved.
Therefore, it is a common practice to sacrifice the
accuracy for speed. Thus, considerable efforts [1-13]
have been made to formulate techniques in linear
form in order that a large number of system
contingencies may be analysed swiftly on-or off-
line.

Techniques [1,2,3] are dealing only with relation
between bus injected active power and bus phase
angles. They are simple, non-iterative and
approximate DC load flow contingency analysis.
They did not take into consideration the second-
order terms of changes in system states and
parameters resulting from system contingencies.
Although the DC power flow methods [1], [2], [3] are
simple and lend themselves to the use of
superposition to evaluate the contingencies effects,
their accuracy was not satisfactory. Therefore, the Z
bus method [4] appeared to give better accuracy, that
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is, the results are more close to those obtained using
standard AC power flow analysis. A modification
was done in reference [5] to the DC load flow
method to consider the second order terms of system
phase angles and parameters. This modification led
to a significant improvement in its performance and
accuracy level for both single and multiple
contingencies. However, all these methods [1-5]
suffer from he inability to provide voltage and vars
information.

To handle this problem, methods [6-7] were
proposed to determine separately the changes in
nodal voltages and phase angles by a linear iterative
process. Another technique [8] had been proposed, it
implemented a sensitivity matrix (inverted Jacobian)
about contingencies which could be formulated
during the iterative process. All these methods had
been applied inspite of the possibility of no
convergence exist. Other approximate AC techniques
based on opposite current injections and
modification of either bus impedance or Jacobian
matrices were proposed in references [9-11]. A non
iterative technique was proposed [12], to calculate
the bus angle from DC load flow. These angles were
used to determine the nodal voltage changes from
nodal current equations. This technique gave
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unsatisfactory results due to the approximate nature
of the angle calculation. A trial was made in
reference [13] to determine effect of system network
parameters on changes in system state variable. The
nodal current changes are expressed in terms of
changes in system nodal voltages by implementing
the system nodal performance equation. It is
iterative, not simple and its results were less accurate
than the standard load flow techniques.

This paper introduces an extension of the modified
algorithm [5] to determine power system state
variables after contingencies. It is an approximate
DC loadflow technique based on the relation
between active and reactive power injected to system
buses and phase angles and magnitudes of nodal
voltages i.e a coupled, (p-8) and (Q-V) model. It
takes into consideration the second-order terms of
changes in system states and parameters involved in
active and reactive power relations. These changes
are due to power system network configuration
contingencies.

The proposed technique is introduction and
discussed through numerical examples to depict its
validity and accuracy. It gives better results with an
acceptable level of accuracy for both single and
multiple contingencies.

2. MATHEMATICAL BASIS
2.1 Nonlinear Loadflow Equation

The general equation of the complex injected
power and current to the i™ bus of a power system
having N buses, are;

Si"=P-jQ= V. I; (1)
and
L TR
I,--E Yi Vi, im11:2:0 N (2)
j=1
where \7: is the conjugate of the complex voltage

vector V; of bus i,

V;=V;|$;
Y—-'- is the element ij of the system bus admittance
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matrix.

= Y,l6; = (G;+B))

Substituting equation (2) into equation (1), the later
becomes:

d| g
Pi-jQi=V; EYV 3)
=1

Equating real and imaginary parts of both sides of
equation (3), thus:

N

=Y ViYj Vjcos (6+5-5) (4)
j=1
N

Qi= - E Vi Yl] V] sin (0.,*8,‘50 (5)

j=1

Equation (4) and (5) are the basic equation for
conventional exact AC loadflow techniques. These
equations can be linearized as shown in the next
subsection

2.2 p-§ Model[1]

The reactance, X, of high voltage overhead
transmission lines is usually much more greater than
their resistance, R, i.e

X/R >>1

Thus, the conductive part Gj of the i j™ element of
the bus admittance matrix can be neglected, i.e

Therefore, equation (4) can be rewritten as:
N
Pi = E Vi B' Vj sin (8| - 8,)
j=1

Also if (§; - &) is sufficiently small such that:

sin (5 - 8) = (5, - §)
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then, the approximate linearized equation of the bus
injected active power as a function of bus phase
angles becomes: [1][5]

i-1 N

j=1 j=i+1

where:
Ki= Y V\V;By (M
j=1,i9j
and

The linearized equation (6) can be rewritten in
matrix form as [1][2],[5})

[P] = [K] [3] 9

where [K] is an (NxN) matrix, the diagonal and off
diagonal elements of which are expressed by
equations (7) and (8), respectively.

Equation (9) is the linear relation between active
powers injections to system buses and phase angles
for a given network configuration.

23 Q-V Model

In a similar way, with the same assumptions
proposed for the (P-8) model, the following (Q-V)
linear model can be deduced by linearizing the non-
linear reactive power equation (5):

N
j=1
Since, (5;-5;) is sufficiently small, then,
COos (5. s 8,) =1

And the linear form of equation (5) becomes:

N
Q=-VB;i-V; - Baade i

foralli=1,2,..,N

Equation (10) can be expressed in matrix form as:
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[Ql =[C] [V] (11)

where [C] is an (NxN) matrix, the diagonal elements

of which are:
Ci=-ViBj (12)

and the off diagonal elements are:

Since bus voltage magnitudes, for both slack and
control buses, are specified and known, the voltages
for load buses are unknown. Also the control and
slack buses reactive powers are unknowns.
Therefore, equation (11) should be partitioned into
two sets of equations, one associated with load buses,
and the other associated with both slack and control
buses. As a results of this partitioning equation (11)
becomes:

Qs Ct Vx
JCEESEEE 2 (14)

QL CLilVo

In this equation Qg for slack and control buses and
Vy for load buses are unknown, but V, for slack and
control buses and Q, for load buses are known.

The lower part of equation (14) can be written as:

Ve

QU =IC)|---- (15)
Vi

The matrix [Cy] can in turn be partitioned to two
submatrices [C,] and [C;] so that equation {15) can
be changed to:

et B
Q:[

[Qu 12)L
or

(Qul = [Ci] [Vy] + [Ca] [V (16)
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3. CONTINGENCY ANALYSIS ALGORITHM

The above two models can now be implemented for
contingency analysis. The removal (addition) of a
line or lines, from (to) the network can be simulated
as follows:

If this happens, it will result in changing the
matrices [K] and [Cy] by correction matrices [AK]
and [AC, ] respectively, and in changing the vectors
[6] and [VL] by correction vectors [AS8] and [AVy].
Therefore, equations (9) and (16) can be rewritten
after contingency as:

[P] = {IK°] + [AK]} [6°+A8] (17)
and
[QU=IC HACHV G,
HAG,]} [VL.°+AV ] (18)

where [K°], [C®], [8°] are the precontingency
conditions.

The correction matrices [AK] and [AC; ] should be
found firstly for both single and multiple
contingencies before using equation (17) and (18) to
derive a linear, approximate, fast and decoupled
contingency analysis algorithm.

3.1 Branch Outage Simulation

If a single contingency occurs such as the removal
of a line pq, four changes will occur in both
matrices [K] and [C;]. The only elements of [K]
matrix that will be changed [1] are K,, K,q, Kgp
and Ky Thus the non-zero elements of the
correction matrix [AK] for the case of p-q line
removal are [1][S]:

AKpp = Kpg + Yep, A Kpg = = Kppg, AKgp = - Kpq

and AKgq = Kjg + ¥yq

Thus the matrix [AK] can be represented as follows:
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p q
0 0 0
SRt y LG -k .0 "
[AK]= |0.. 0 0 0 .0
q |0.. —qu 0 qu+y'q .0
0.. 0 0 0 .0

Similarly the changes in matrix [C; ] due to a single
contingency are the elements Cp,, Coq, Cgp and Cgq.
Therefore, the non-zero element of correction
matrix [AC] are:

ACp, = Cpq + Yap» ACpq == ACq,, A Cyp

and

allie sy R C. .0 "
AC, = SESIRINEE | SO 0 | .0
gloE=c leNa .y, .0

[P 0 .0

where yg, and y,q are the shunt admittances of line
p—q at buses p and q respectively. Or

[ACL] = [AC; AC,]

where, [AC,], [AC;] are the right-and left hand
partitions of [ACy] according to vectors Vg and Vi
respectively.

Note that in case of line addition both [AK] and
[AC.] will have opposite signs.

Similarly, if there is multiple contingencies
occurrence, such as, for example, the removal of the
two lines pq and ij, eight changes will occur in both
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matrices [K] and [Cy]. Similar to the single
contingency case, the only elements that will be
changes in both matrices are:

PP, Pq, 9P, 94, ii, ij, ji, and jj
3.2 Fast Decoupled Algorithm

A fast linear contingency analysis algorithm can be
developed by expanding equations (17) and (18). Its
objective is to determine the changes of the system
state variables A8 and AVy resulting from the
contingencies under consideration.

The expansion of equation (17) is:

[P] = KNS HAKNEHK IHAK] A[B]  (21)

Equations (21), after some rearrangements, can be
written as:

(K] [As] = [AP] (22)

where

[K7={K° + [AKlf (23)

and

[Ap] = [p] - [p°] - [AK] [8°]

The vector [AS] is the correction vector of the
unknown phase angles of nodal voltages. It takes into
account the change in network configuration due to
contingencies an in assigned power injections.

The following expression can be developed in a
similar way from equation (18) to find the correction
vector [AVy] for nodal voltages of load buses.

[C2T1[AVL] = [AQL] (24)
where,
[C2] = {IC°] + [ACy))
and
V‘
(AQu =[Qu - {C7T +[ACD | @9)

L

Equations (22) and (24) are the basic equations of
the contingency analysis algorithm. They can be
coupled together to determine both A5 and AV
simultaneously as follows:
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AP

Ad

K 0

> i

Therefore, the general equation after n sequential
network configuration contingencies equivalent to
simultaneous outage of n lines in a multiple
contingency (of the n™ order) is:

K™ o|las®| |[aP®

= 26
oL efllavitilaqQr i
The coefficient matrices [K] and [C’;] can be
evaluated from the matrices [K] and [C,] after the
simulation due to prior knowledge of the network
configuration changes. These matrixes are
symmetrical and have dominant diagonal elements.
Their sparsity structure is identical to the system
nodal admittance matrix. Therefore, the sparse
matrix inversion technique [14], [15] can be
implemented to obtain [A8"] and [AV"] where:

astlik* ol lar®
avilo chl |aqr

Thus, the bus phase angles and load bus voltage
magnitudes vectors after (n) contingencies are:

[5°] = (8] + [A8"]
[VL" = [V + [AVL"] (28)

As the V" vector is calculated, the reactive power
injection to control buses can be calculated from the

upper part if equation (14) as:

[Q."] = {C,*"] + [AC,™]} [V (29)
where

Vv
L Il
L

Therefore, a linear non-iterative algorithm is
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introduced. Its output results will be the power
system post contingency state variables which are the
system bus voltage magnitudes and phase angles in
addition to the reactive power modifications
necessary to keep the voltages of control buses
constant. The algorithm will be applied for both
single and multiple contingencies to investigate its
validity and accuracy level. The algorithm
computational flow chart is shown in Figure (1).

READ THE INPUT DATA

CALCULATE [ X° ] & [ C° ] MATRICES

FORMULATE: [AX"), (Ac’;l.tnc‘l

2

: (K'P)=(x®1 4 AKR] ,
n::l-l::' + Ac:l’. (cil-(c:'l¢oc:l

A
mxxuz & as"

Vo A . %™ "

Is

CALCULATE : THE SYSTEM STATE VARIABLES,
IBJECTED BUS POWERS & LINE POWER FLOWS

PRINT OUTPUT RESULTS

Figure 1. Proposed algorithm flow chart.
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4. NUMERICAL EXAMPLES

For the purpose of illustration, the IEEE thirty bus
system shown in Figure (2), is used as a test sample.
The operating condition of the system is computed
first, with all its network parameters in service by
the conventional Newton Raphson load flow method.
All buses are considered as (P-Q) buses except
busbar (1) as a slack bus. The output results are
considered as base data the contingency analysis. The
proposed technique is applied for two cases of study.
The first is single and the second is a simultaneous
multiple contingencies. The output results of the
decoupled algorithm are compared with those
obtained by the separate runs for (P-8) and (Q-V)
models are applied individually using equations (22),
(24), to determine the effect of decoupling. Both
results are compared with conventional Newton-
Raphson AC loadflow method with the selected lines
out of service.

w

Figure 2. IEEE thirty bus system.
4.1 Single Contingency

It is assumed, a decision is taken to remove line
(15-18), or a forced outage occurs to it. The
proposed technique is implemented to determine
system state variables due to such outage. The output
results are given in Table (1), (2). They indicate that,
inspite of the fact that the proposed technique is
approximate and non-iterative, it is valid for single
contingency, with accuracy level very close to AC
load flow. The decoupled algorithm improves such
level. It is clear that, the deviations for the nodal
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Table 1. Computer results. (.Single contingency).

Bus code non coupled algor conventional L.F. Proposed algor
\Y4 5 \% é \% )

1 1.0600 0.00 1.0600 0.00 1.0600 0.00

2 1.0590 -5.95 1.0590 -5.66 1.0590 -5.66
3 1.0547 -14.26 1.0547 -14.35 1.0547 -14.34
4 1.0707 -12.79 1.0707 ~12.58 1.0707 =-12.55
5 1.0663 -14.47 1.0663 -14.80 1.0663 -14.64
6 1.0663 -14.47 1.0663 -14.80 1.0663 -14.64
7 1.0852 15:52 1.0852 =15.31 1.0860 ~15.57
8 1.0707 -16.85 1.0707 -17.04 1.0671 -16.84
9 1.0759 -16.98 1.0759 -17.03 1.0821 -17.02
10 1.0775 -16.11 1.0775 -16.29 1.0713 -16.27
11 1.0644 -12.42 1.0644 -12.45 1.0533 12.43
12 1.0623 -8.53 1.0623 -8.36 1.0666 -8.37
13 1.0590 -10.06 1.0590 -10.05 1.0659 -10.07
14 1.0797 -16.77 1.0797 -16.26 1.0726 -16.64
15 1.0771 -16.99 1.0771 -16.34 1.0814 =16.79
16 1.0784 -16.13 1.0784 -16.02 1.0709 -16.27
17 1.0736 -15.81 1.0736 -16.67 1.0586 -16.51
18 1.0720 -17.16 1.0720 -18.96 1.0847 -17.45
19 1.0689 ~17.50 1.0683 -18.72 1.0703 -17.62
20 1.0710 =17.30 1.0710 =18.21 1.0776 -17.31
21 1.0710 ~-16.85 1.0710 -17.09 1.0746 -16.88
22 1.0625 -11.76 1.0625 =11.77 1.0688 -11.76
23 1.0733 -17.29 1.0733 -17.03 1.0857 =17.29
24 1.0703 -17.66 1.0703 -17.43 1.0633 -17.43
25 1.0619 -13.48 1.0619 -13.50 1.0622 -13.48
26 1.0753 -17.85 1.0753 -17.98 1.0758 =17.97
27 1.0694 -16.10 1.0694 -16.40 1.0725 -16.15
28 1.0841 ~-15.56 1.0841 -15.31 1.0841 -15.58
29 1.0699 -17.85 1.0841 =17.78 1.0770 -17.58
30 1.0642 . =18.76 1.0639 -18.60 1.0543 -18.57
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Table 2. Computer results (power flows for single contingency).

Proposed algorithm Conventional AC L.F
Bus code from active reactive active reactive
1 2 1.76684 -0.50616 1.78089 0.20828
1 12 0.84468 -0.17919 0.84287 0.13583
2 3 0.82397 -0.10874 0.81796 0.18907
2 13 0.44291 -0.16795 0.46153 -0.00257
2 22 0.60801 -0.22305 0.62920 0.04964
3 25 -0.14758 -0.00836 -0.15644 -0.09654
4 11 0.01572 -0.08787 0.00945 -0.05102
4 22 -0.33750 0.14635 -0.29054 -0.24895
S 6 0.00 -0.00000 0.00 0.00
S 22 -0.27571 -0.00584 -0.30595 0.10612
5 27 0.27438 0.05609 0.30595 -0.10612
7 28 -0.00 -0.06747 -0.00 0.00
8 21 -0.10651 -0.29060 -0.01926 -0.05803
8 24 0.05617 -0.01350 0.05441 0.03934
8 27 -0.8925 0.00516 -0.07364 0.01873
9 10 -0.03377 0.07407 -0.03219 0.01286
9 24 0.04524 0.03587 0.00329 -0.08057
9 26 0.04346 -0.01077 0.03547 -0.02229
10 11 -0.19116 0.05502 -0.16671 -0.04866
10 29 0.04724 -0.03904 0.06213 -0.01152
10 30 0.07168 -0.00640 0.07104 -0.01046
11 22 -0.27479 -0.30308 -0.27624 -0.07309
12 13 0.79970 -0.24322 0.78927 0.07019
13 22 0.73603 -0.27598 0.74056 0.15244
13 28 0.43851 -0.09887 0.41434 -0.08235
14 15 0.01651 -0.02905 0.00709 0.00191
14 28 -0.10456 -0.04133 -0.06909 0.01409
15 23 0.03161 -0.03806 0.07042 0.00535
15 28 0.19612 -0.00816 0.14535 0.02154
16 17 0.04534 0.04925 0.05019 -0.00550
16 28 -0.10783 -0.07623 -0.08519 0.02350
17 27 -0.13107 -0.12321 -0.04002 0.05203
18 19 0.06850 0.08700 0.03200 0.00901
19 20 -0.11821 -0.05645 -0.12709 0.04290
20 27 -0.08309 0.06480 -0.14970 0.04869
21 27 0.14929 0.10150 0.15199 -0.04357
22 25 0.40487 -0.03914 0.39033 -0.03024
22 27 0.15804 -0.00098 0.17498 -0.04818
23 24 0.04384 0.06843 0.03794 0.02038
29 30 0.05306 -0.02489 0.03716 -0.00437
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Table 3. Computer results. (Multiple contingency)

—
Bus non coupled algor conventional L.F. Proposed algor
code v 5 v 5 v 5

1 1.0600 0.00 1.0600 0.00 1.0600 0.00

2 1.0590 -12.22 1.0590 -5.66 1.0590 -5.66
3 1.0547 -22.92 1.0547 -15.69 1.0547 -14.33
4 1.0707 -21.04 1.0707 -15.75 1.0707 -12.57
5 1.0663 -12.38 1.0663 -17.71 1.0663 -14.63
6 1.0663 -19.39 1.0663 -17.71 1.0663 -14.63
7 1.0837 7.32 1.0727 -18.25 1.0827 -15.57
8 1.0710 -20.46 1.0587 -19.88 1.0758 -16.85
9 1.0755 -11.50 1.0621 -20.10 1.0758 -17.02
10 1.0781 -21.83 1.0637 -19.38 1.0846 -16.27
11 1.0647 -7.16 1.0497 -15.53 1.0643 12.43
12 1.0604 6.76 1.0497 -10.15 1.0653 ~-8.37
13 1.0584 -10.09 1.0468 -12.23 1.0565 -10.06
14 1.0790 -25.44 1.0682 -19.37 1.0808 -16.64
15 1.0770 -10.48 1.0655 -19.58 1.0835 -16.80
16 1.0784 -10.69 1.0668 -19.08 1.0827 -16.26
17 1.0733 -28.20 1.0614 -19.49 1.0658 =16.51
18 1.0723 -14.66 1.0604 -20.34 1.0390 -17.46
19 1.0688 -11.17 1.0582 -20.56 1.0702 -17.61
20 1.0695 -21.72 1.0580 -20.28 1.0745 -17.31
21 1.0713 -24.61 1.0589 -19.92 1.0708 -16.88
22 1.0625 -14.55 1.0507 -14.91 1.0554 -11.75
23 1.0743 -17.51 1.0623 -20.18 1.0742 -17.22
24 1.0710 -13.02 1.0581 -20.44 1.0723 -17.42
25 1.0619 -12.04 1.0506 -15.92 1.0618 -13.48
26 1.0749 -24.21 1.0618 -21.07 1.0687 -17.96
27 1.0694 -7.89 1.0573 -19.18 1.0645 ~-16.15
28 1.0841 -17.13 1.0841 -18.25 1.0841 =15.58
29 1.0704 -24.69 1.0560 -20.83 1.0745 17.68
30 1.0644 -12.70 1.0497 -21.75 1.0667 18.58
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Table 4. Computer results (power flows for single contingency).

Proposed algorithm

Conventional AC L.F

Bus code - .
from active reactive active reactive
p.u p-u p-u p-u
1 2 1.76605 -0.50569 1.62317 0.31481
1 12 0.84543 -0.17177 1.03746 0.26441
2 3 0.82356 -0.10871 0.99779 0.27286
2 13 0.45605 -0.11564 0.76131 0.08490
3 25 -0.15495 -0.00554 0.00626 -0.08576
4 22 -0.25137 -0.46459 -0.30000 -0.29997
5 6 0.0 0.0 0.0 0.0
5 22 -0.27255 0.06296 -0.27666 0.11148
7 27 0.27279 0.02132 0.27666 -0.011148
8 28 0.0 -0.0 0.0 0.0
8 21 0.11045 0.17202 0.01138 -0.05129
8 24 0.05586 -0.01474 0.06735 0.02814
9 474 -0.04287 -0.10248 -0.07871 0.02312
9 10 -0.07610 -0.00518 -0.02901 0.09838
9 24 0.02341 -0.00200 -0.00650 -0.07614
10 26 -0.04383 0.00867 0.03551 -0.02224
10 11 -0.19552 0.06210 -0.16376 -0.04137
10 29 0.06521 -0.00717 0.06225 -0.01132
11 30 0.07429 0.00559 0.07188 -0.01021
12 22 -0.16361 -0.20690 -0.16377 -0.05488
13 13 0.86124 -0.04082 0.96683 0.12796
13 22 0.74532 -0.17306 1.14263 0.20414
14 28 0.43028 -0.09167 0.46379 -0.06837
14 15 0.01630 -0.01481 0.01780 -0.00173
15 28 -0.07331 -0.02334 -0.07980 0.01774
15 18 0.13516 -0.15472 0.06356 -0.01463
15 23 0.05394 -0.02339 0.06064 0.00910
16 28 -0.15241 -0.07709 -0.18848 0.02873
16 17 0.05700 -0.07062 0.04450 0.00231
17 28 0.05911 0.02250 -0.07950 0.01569
18 27 0.06777 -0.04266 -0.04567 0.05992
18 19 -0.08103 -0.12067 0.03109 -0.00660
18 20 -0.08404 0.21667 -0.06399 0.02728
20 27 -0.07273 -0.08518 -0.08617 0.03393
21 27 -0.12320 0.14910 -0.16364 0.06063
22 25 0.35064 0.19062 0.22363 -0.05044
22 27 0.15510 -0.01134 0.15823 -0.05235
23 24 0.01545 -0.00018 0.02825 0.02431
29 30 0.03874 0.00225 0.03720 0.00508
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voltage magnitudes, between the proposed technique
and AC load flow, has a maximum value of 2.3%
while for the angles is about 0.5%. This accuracy
level can be considered acceptable since the
permissible errors for such approximate linearized
techniques are about 4-8% (see discussions on
references [3], [6], [10] and [12]).

4.2 Multiple Contingencies

The proposed technique is rerun, in this case, with
lines (2-22) and (4-11) out of service simultaneously.
The output results are given in Tables (3) and (4).
They show that, the proposed technique is still valid
with less accuracy level. The maximum deviation of
voltage magnitudes is about 2.1%, but for the phase
angles the deviation are high (=4%).

5. CONCLUSION

A simple, linear and fast contingency analysis
algorithm is introduced in this paper. Its output
results indicate its validity to determine the power
system state variables, after contingent changes in its
network parameters, specially those resulting from
single contingencies. If multiple contingencies occur,
it could be run sequentially to obtain output results
close to the AC load flow techniques. Therefore it
can be used, for such cases, instead of conventional
AC techniques with an acceptable accuracy level and
time saving. When AC load flow is to be used to
study contingencies, the speed of solution and the
number of cases to be studied are critical. If the
contingency alarm comes too late for the operator,
they are worthless [2], [17].

The proposed technique is based on linearizing the
basic AC loadflow non-linear equations. It takes into
consideration second order change terms of state
variables and network parameters effects. The
decoupling of both (P-§) and (Q-V) models
improves the proposed technique accuracy level. The
technique results depicts that, it could be
implemented for single contingency successfully. In
multiple contingency analysis, the algorithm can
b\deal with the system on the basis of sequential
single failure events. The lines to be outaged can be
taken one after the one in sequence until all credible
outages has been studied [2], [17]. For each outage
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tested the contingency analysis check all lines and
nodal voltages in the network against respective
limits. The proposed technique will be a good guide
for system dispatcher and planner to have a quick
view for the power system under emergency
conditions. It could be used to check the most
important lines in the network whose outages may
cause the system monitoring to collapse.
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