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ABSTRACT

A conformal mapping-marching numerical method is proposed to solve the laminar hydrodynamic
entrance length problem in a straight duct. The cross section of the duct with curved contour is
transformed,using the conformal mapping,into a rectangular shape. The mass and momentum
conservation equations in the original plane are re-expressed in terms of the transverse velocity
components along the new coordinate system in the transformed plane. The resulting equations casted
in a finite difference form were solved using the Patankar-Spalding marching technique. The method
was applied to calculate the axial pressure drop in the entrance of elliptic and annular eccentric
circular ducts. The novelty of the method is the use of the finite difference numerical technique in
the case of curved boundary ducts without the need to very fine large size grids.

NOMENCLATURE
a,b Ellipse semi-major and semi-minor axes.
Dy Hydraulic diameter. w Dimensionless axial velocity component in z
e Eccentricity of annular eccentric circular direction.

duct. w Axial velocity component in z direction.
f Transformation function . Wwo Average velocity of flow.
h Transformation parameter. X,y Transverse coordinates in x-y plane.
k Geometric scaling factor. Z Dimensionless axial coordinate.
L. Dimensionless entrance length for pressure z Axial coordinate.

development. E,H  Dimensionless transverse coordinates in ¢ -
A Pressure developing entrance length. n plane.
P Dimensionless pressure. én Transverse coordinates in ¢ - n plane.
p Pressure. v, Dimensionless transverse velocity
Po Duct inlet pressure. components in ¢ - n plane.
Re Reynolds number. v.¢ Transverse velocity components in ¢ - 7
f. Reg p Fully developed Friction factor* Reynolds plane. ;

—m— (S Angle of rotation.
: = n Viscosity.

Ro,R; Outer and inner radii of annular duct. p Density.
u,v Transverse velocity components in x-y plane. € Aspect ratio.
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INTRODUCTION

The mathematical handling of the hydrodynamic
flow in the entrance length of a duct is complicated
by the presence of transverse velocities due to the
flow development. The complexity further increases
if the transverse field is of the two dimensional type.
The mathematical structure of such problems is
founded either on the boundary layer idealization or
the full Navier-Stokes equations. Boussinesq [1]
divided the flow field into two regions. The first is
near the duct entrance,where the boundary layer is
growing on the duct wall and the fluid in the core is
accelerating,while the second is adjecent to the fully
developed part. He described the flow field by
perturbations imposed on the Blasius solution in the
first and on the fully developed solution in the
second. The two solutions are then joined smoothly
or matched at an axial location between them. The
above approach was used by [2,3] for the parallel
gap, by [4] for the circular tube,and [5,6] improved
the solution of [2] by considering more terms in the
expansion. Later,[7] proved that the series solution
of [2] applies only downstream from the entrance
section and proposed new series solution. The
improvement of the work of [2] was further
extended in [8] by employing a second order
boundary layer analysis. The Von Karman-
Pohlhausen integral method,with a parabolic velocity
profile in the boundary layer and the Bernoulli's
equation in the inviscid core was employed to
predict the flow inside the circular tube and the
parallel gap [9]. Cubic and quartic profiles were
tried in [10,11] to refine the analysis of [9], and the
logarithmic profile was checked in the circular tube
[12]. The effects of the viscous forces in the entire
flow field was taken into account by replacing the
Bernoulli's equation by the mechanical energy
equation [13]. The parabolic profile was used to
determine the characteristics of the flow field in the
circular tube [14] and in the parallel gap [15], and
the power law profiles in the parallel gap [16]. The
integral method was also used to tackle the full set
of the Navier-Stokes equations in the circular tube
and parallel gap [17]. The linearization of the
nonlinear inertia terms in the momentum boundary
layer equation,having only one independent
transverse coordinate,was introduced by Langhaar
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[18] , Targ [19,20], and Sparrow et al. [21]. The
simplification enables the analytic solution of the
momentum boundary layer equation. The
linearization model [19,20] provides slower flow
development near the duct entrance. One advantage
of the linearization technique is the absence of
discontinuities in the velocity and pressure fields.
The linearization [18] was employed by [22,23] for
the parallel gap and the equilateral triangle. The
annular duct was solved by [24,25,26] using the
linearization [18],by [27,28] using the linearization
[19,20],and by [29,30] using the linearization [21].
The extension of the above linearization schemes to
include situations with two independent transverse
coordinates can be found in [31,32,33]. The
linearization method is restricted to simple flow
situations without geometric asymmetries and strong
property variations. Linearization of the complete
Navier-Stokes equations can be found in the parallel
gap case by [34].

The utilization of the numerical techniques
eliminates the need for velocity profiles or
linearization schemes to integrate the governing
equations. According to the flow situation,the duct
geometry,and the computational accuracy,the
governing equations can be mathematically
formulated both transversely and axially
parabolic,transversely elliptic-axially parabolic,or
both transversely and axially elliptic. The axially
parabolic formulations were casted in a finite
difference form and solved by the marching
technique for the parallel gap [35],circular tube
[36,37,38],rectangular duct [39,40],square duct
[41,42] ,concentric annular circular duct
[43,44,45,46,47] ,and eccentric annular circular duct
[48]. The elliptic- elliptic formulation was solved by
an iterative scheme in the case of the circular tube
[49,50,51,52],the parallel gap [53,54,55, 56,57],and
the concentric annular circular duct [58].

Ducts with curved boundaries or geometric
asymmetries as the elliptic and the annular eccentric
circular ducts,require fine calculation grids to obtain
accurate results with the finite difference method. If
a transformation can be sought which renders the
boundaries straight,then the number of grid points
can be reduced. In order to demonestrate this
idea,the boundaries of the elliptic and annular
eccentric circular ducts were made straight and the
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THEORETICAL ANALYSIS

The equations governing the transport of mass and
momentum of a constant property fluid flowing
without dissipation through the entrance of a
uniform cross sectional area duct are:-

&
4
g

e S 0 (1)
p[u%w%w%}»%w[i‘}s‘;‘;] @
pladt v S w2y Fr. B
P[“%*'%*W%l““%*”[g*?]m

The boundary conditions of the above set of
equations are:-

u=v=w =0 ,on the duct wall (5)

u=v=0,w=w,,p=p,z=0 6)
u=v=0 ,%}:o z2>1, (1)

The above set of equations has to be solved
numerically. In the case of a curved duct, it is
convenient to make the duct sides straight and
perpendicular by a special transformation. If the
transformation function (x + iy )=f( n + 1 & ) is
analytic over the duct cross section, then the
transformation is conformal. A total component of
the velocity vector V in the transverse plane x-y and
inclined an angle a to the x-axis, when represented
on the ¢&-n plane will make an angle (a + 6) to the
{-axis. The angle of rotation 8 equals the argument
of the gradient of the transformation function f, 1.
e. 8 = arg. f". The transverse velocity components u
and v of V along the axes x and y are related to the
components ¥ and ¢ of V along the axes ¢ and 5 by:
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u = ¥ cos® + ¢ sin®
V=-{ sin6 + ¢ sind

The above two equations together with the
transformation fuction f, can be used to obtain the
following transformed version of the flow governing
equations:
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where k is a geometric scaling factor equals

J (%y » (%)2. The group of equations(8) through

(11) can be casted in a dimensionless form by
introducing the following dimensionless variables:

7-¥ o0-¢ w- ¥ ®-py
Vo Vo Wo pwW,’
LN O U
Dy D,
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The new set is:
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the geometric factor k, which is a function of the

transverse location. The dimensionless transformed

version of the boundary conditions (5) through (7) is:

The Reynolds number Re = , includes

¥ = ® =W =Oon the solid boundaries (16)

¥=0=0,W=1,P=0 Z=0 17

W ]
¥-0-0,22-0,Z>L = —"°
E72 (D k)

(18)

The above method will be checked for flow
situations inside the elliptic and annular eccentric
circular ducts. The transformations appropriate for
these ducts and the corresponding geometric
parameters are summarized below.

The Elliptic Duct:

The transformation x + iy=h sin ( n + i ) will
change the ellipse curved contour (x%/a% + y2/b%)=1
in the x-y plane into a straight line (¢ =¢&¢p ) in & -
n plane, Figure (1). Where "h" is the semi focal
distance (a? - b%)Y? and &o equals tanh™(b/a). The
transverse velocity vector rotation angle © and the
geometric scaling factor k in the case of the ellipse
are respectively :

6 = arctan(cothf cotn)

and k=—h—sinh2€ + cos’n
DH

2 ! x —»
&

4
l’—— 2a —o{
(a) (b)

Figure 1. The transformation of the elliptical duct.
The Annular Eccentric Circular Duct:

The transformation:

(x+iy)=hcot _(_'l_"?'_ﬁ_)_

will change the duct subtened between the two
eccentric circles in Figure (2-a), into the rectangle
in Figure (2-b), where:

h= % [(ROZ + R{Z _ e2)2 T 4R02Rl2]1/2
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The transformed boundaries of the duct are
represented in the new plane by the following
straight lines:

=. -l——h— s = i -1 -£
§o =sinh™( RO),E, sinh™( R_)

The eccentricity of the duct is related to the above
variables by:

e=-h[coth§, -coth {]
The B and k values for this geometry are:

coshfcosn -1

6 =arctan [ - -
sinh £ sinn

and
A5 D
[cosh§ -cosn]

—ot

k—*—-{»——a—d

g1
(a) (b)

Figure 2. The transformation of the annular
eccentric circular duct.

RESULTS AND DISCUSSIONS

The group of equations (12) through (15) subjected
to the boundary conditions, equations(16), (17) and
(18), were casted in a finite difference form and
solved using the marching technique described in
[40]. The derivatives 08/d=and d8/9H as well as the
Reynolds number, which contains the factor k,
depend on the transverse location only, and can be
calculated once and for all, at all grid points, from
the geometric relations of a given duct shape. The
extra terms, appearing in the group (12) through (15)
, other than those in a standard form, as for
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example, equations (1) through (4), will be handled
as source terms in the solving program. The
gradients of the velocity components ¥ and @ in the
source terms will be calculated from the slope of a
quadratic polynomial fitted through the respective
grid point and the two neighbouring points. At a
boundary point, the gradients are to be obtained
from the slope of a cubic polynomial. In the
transverse plane, the size of the computational grid
was 80x80. The grid points were uniformly
distributed. The accuracy of the numerical
computation was increased by benefitting from the
geometric symmetry of the ellipse and the annular
eccentric ducts. The calculation domain is one
quarter of duct cross section in the first and one half
in the latter. The axial step AZ/DyRe was uniform
and equals 10°. The axial derivatives were first
computed with respect to the axial increment
AZ/Dy, which is the same at all transverse points,
and are then scaled by the factor k before being
used in the finite difference balance equations. So
long as the curved duct geometries will be changed
in this method to rectangular shapes, it seemed
essential to compare the pressure drop predictions
obtained by the marching technique with the
available data in the literature. The static pressure
drop in three rectangular ducts having aspect ratios
0.2, 0.5, and 1.0 were calculated and plotted in
Figure (3). The experimentally measured pressures
by Beaver et al. [59] are very close to those
calculated in the present work.

Table 1. Comparison of the fully developed friction
factor in rectangular ducts.

Rectangular duct aspect f. Re f. Re Percentage
ratio beavers et | present work | difference
al. [59]
1. 00 56. 908 | 56. 895 | -0. 0228
0. 50 62. 192 | 62.182 | -0. 0160
0. 25 76.282 | 76.273 | -0.0110

The comparison in Table (1) reveals that the
experimental fully developed friction factor times
the Reynolds number are higher than the numerical
ones by only 0.02%. The Langhaar's linearization
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technique used by Han [60] predicts faster flow
development in the three ducts. The pressure
distribution computed by the linearization method
devised by Fleming and Sparrow [32] is in excellent
agreement with the experiments [59] and the
difference can not be distinguished on the graph,
while those of Wiginton [31] lies between Han [60]
and the experiments [59]. The pressure drop of Curr
et al. [40], which was obtained by the finite
difference method assuming a uniform velocity at
inlet, is also in excellent agreement with the
experiments [59]. The foregoing argument gives
support to the marching technique as an appropriate
method for calculating the flow in the entrance of
rectangular ducts. It also revealed that some of the
approximate methods always overestimate the
pressure drop in the entrance of these ducts.

5.0

C32,59 Fresent]

—

. 2/ReDy
0 Qo1 02 Q03 Q004

Figure 3. The static pressure. Distribution in
rectangular ducts having aspect ratios 0.2, 0.5
and 1.0.
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Figure 4. Pressure drop in the entrance of elliptical
ducts.

Pressure Drop in the Entrance of Elliptic Ducis:

The results of calculating the static pressure drop
in the entrance of elliptic ducts are shown in Figure
(4). The pressure drop decreases with the increase of
the aspect ratio, or as the profile becomes more
rounded. The fully developed friction factor and the
entrance length for complete pressure development
are documented on Figure (4). In the comparison
diagram, Figure (5), the experimental pressure
drop measured by Abdel-Wahed et al. [61] in an 0.5
aspect ratio duct is higher than those calculated by
Bhatti [62] and by the present investigators. The
experimental set-up [61] incorporates a large thin
flat plate attached to the test section at its entrance.
Therefore, the fluid inlet velocity in the elliptic duct
1s expected to be non-uniform. A vena-contracta
will establish near the duct inlet. The pressure
decrement due to such contraction in a circular tube
amounts approximately to one half dynamic head. In
an elliptic duct, the loss is expected to be more than
one half. The constant difference between the
experimental pressure [61] and that computed in the
present investigation in the fully developed regime
is about 0.7 times the dynamic head. Consequently,
one can claim that the present calculation method,
based on a rigorous numerical analysis, predicts
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accurately the development of pressure in the
entrance of elliptical ducts. On the contrary, the
approximate integral approach due to Bhatti [62]
founded on an assumed velocity profile in the wall
boundary layer overpredicts the pressure in the
developing part.

T T T T T T2
60|
n;o 5_0 -
[+
el
Q
9 3 - _Bhatti 2
— Present Work
20 _ﬁ
10 | | | 1

0 Q@ Q02 Q03 Q4 05 Qo6 Q7
Z [Re- Oy
Figure 5. Comparison of the pressure drop in the
entrance of an (0.5 aspect ratio elliptical duct.

Pressure Drop in the Entrance of Annular Eccentric
Circular Ducts:

The static pressure distribution in eighteen annular
eccentric circular ducts with different diameter
ratios' and eccentricities were calculated. The
diameter ratios were 0.2(0.2 ,0.4, 0.6, and 0.7), 0.4
(0.1, 0.2, 0.4, and 0.5), 0.5 (0.1, 0.2, 0.25, and 0.4),
0.6 (0.1, 0.2, and 0.3), and 0.8 (0.05, 0.1, and 0.15).
The numbers in brackets are the eccentricities
corresponding to these diameter ratios. The pressures
were plotted in Figures (6) through (10). On the
same figures, the fully developed friction factors
and the entrance lengths necessary for the pressure
development are written. For a given diameter ratio,
the fully developed friction factor, on one hand,
decreases with the increase of the eccentricity and
on the other, the entrance length increases with it.
The friction factor and entrance length show similar
behaviour with the diameter ratio if the eccentricity
is kept constant. The pressure drop in the duct
having diameter ratio and eccentricity 0.5 and 0.25
respectively, is compared with that obtained by
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Feldman [48]). The comparison is shown graphically
in Figure (11). The pressure prediction of Feldman
lies above that found in this research. Feldman in his
analysis postulates that the transverse flow in the
entrance length emerges radially from the two
cylinders forming the annular duct. The present
method does not contain such hypotheses.
Unfortunately, our pressure drop in the annular
eccentric circular duct could not be compared with
experimental results due to the lack of this
information in the literature. Despite this lack, one
can relay, at least at the present time, on the results
of this investigation to estimate the laminar pressure
drop in the entrance of annular eccentric circular
ducts. The reported friction factor [63] in an annular
concentric circular duct, of a specific diameter ratio,
is larger than that in an annular eccentric duct
having the same ratio. The friction factor decreases
as the inner cylinder moves off the center of the
outer one. The hydrodynamic entrance length for the
velocity development is slightly larger than that
required for the pressure development. The velocity
entrance length of Feldman in the eccentric duct is
about ten times that obtained by Roy [28] , Sparrow
[29] , Liu [45], and Coney [47] in the concentric
duct. The pressure developing entrance length in the
eccentric ducts of this investigation are of the same
order of magnitude as the velocity entrance lengths
computed by [28, 29, 45, 47].

&0 B :
Eccentric [Egm '
e f-Regp Le
- Q2 86164 Q0164
04 72798 00168
06 59183 00211
30 53653 Q0243 o
'}0
+
=
<
20 o
10 | A |

Qo1 Qo2 :

Z/Re o, Qo3
Figure 6. Static pressure drop in the entrance of
the annular eccentric duct, € = 0.2.
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Figure 7. Static pressure drop in the entrance of the Figure 9. Static pressure drop in the entrance of the
annular eccentric duct, € = 0.4. annular eccentric duct, € = 0.6.
40 o !
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e f. Reqn L
| 005 87596 Q0119
010 65951 00124
015 52393 00208
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"
Q,
e {
R
920 5
1.0 1 ‘ A l I
0 001 002 3 Z/Re 0,
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Figure 10. Static pressure drop in the entrance of the

Figure 8. Static pressure drop in the entrance of the annular eccentric duct, € = 0.8.
annular eccentric duct, € = 0.5.
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Figure 11. Comparison of the statc pressure in the
annular eccentric circular duct, e= 0.25 and e= 0.5.

CONCLUDING REMARKS

1- The problem of laminar flow in the entrance of
a straight duct with curved boundaries can be
conveniently solved by the present method.

2- The novelty of the method is the use of the
finite difference numerical technique in the
case of curved boundary ducts without the
need to very fine large size grids.

3- The pressure drop in the entrance of an
elliptical duct increases with the decrease of the
duct aspect ratio.

4- The pressure drop in the entrance of an annular
eccentric circular duct decreases with the
eccentricity and increases with the diameter
ratio.
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