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ABSTRACT

In this study a simple method is presented to take into account; the effect of the inclination of the members
on the response, the angle between the members and the direction of wave propagation,the effect of neglecting
the variation in water surface elevation in computing wave forces. It is shown that, this variation has a
pronounced effect on the distribution of the forces. The importance of using relative velocities and accelerations
in calculating the forces on space frame offshore structure is demonstrated, too.

INTRODUCTION

The discovery of large deposit of oil and gas in offshore
areas has resulted in the construction of large drilling and
production platforms, which often have to withstand severe
environmental conditions in inhospitable areas.

In calculating the response of a jacket type platform it
is usual to use Morison equations to find out the applied
forces. The computed wave forces by Morrison equation
consists of two parts ; drag force and inertia force. The
drag force is proportional to the square of the water
particles’ velocities, while the inertia force is proportional
to the water particles’ accelerations.

To be able to calculate the response of the structure

/using the frequency domain method, a linearization of the

drag force is required.

The relative importance of the following factors;
members orientation, variation in water surface, using
relative velocities and accelerations on computing wave
forces is a function of the dimensions and stiffness of the
structure and wave characteristics.

For compliant structure, we need to compute the
structure response U in order to compute wave force.

The finite element method is used to model the
structure and to construct the mass and stiffness
matricesThe structure damping matrix is taken
proportional to the stiffness matrix. We also, considered
the hydrodynamic damping. The response of a structure
may be calculated using either quasi static or dynamic
analysisBoth approaches may be based on using
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deterministic or non-deterministic methods of analysis.

The mathematical analysis of the platform results in a
system of equations governing the structure motionThese
equations were solved numerically in time and frequency
domains to compute the structure response The statistics
of wave forces, moments are discussedThe time series of
wave forces have shown deviation from Gaussian
distribution even when the surface elevation is normally
distributed.

EQUATION OF MOTION

The general equation of motion for any linear elastic
structure, assuming viscous damping is given by:

MU+ [CIU +[K]U=F 1)

where a letter written in bold face means a vector
quantity, and

[M], [C], [K] are the mass, the damping, and the
stiffness matrices, respectively. F is the force vector

and

U, U, U are displacement, velocity and acceleration
vectors respectively

If the stiffness and mass matrices are constructed using
the same shape functions then they are said to be
consistent. In offshore engineering, it is a common
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practice to use a lumped mass matrix.

Since little is known about the nature of the damping
matrix, then it is usual to assume a damping matrix as a
combination of both the mass and stiffness matrices. A
form that leads to a proportional damping matrix is given
by

ICHMJ;a,, M K])° )

where the values of b can lie anywhere in the range - <
b < +00 but in practice it is desirable to select values as
near to zero as possible and the existing terms must be
equal in number to the number of the known modal
damping ratios [1].

In this paper we use a damping matrix that satisfies
equation (2) with b = 1

[C] = a, [K] 3)
where
231
2 = — 4
W,
where

€, is the damping ratio of the first mode
w; is the undamped natural frequency of the first mode
In the analysis of offshore structures subjected to wind,
current and wave forces, it is clear that the applied load
vector consists of surface forces only. In offshore
engineering it is usual to define the load vector as a set of
concentrated loads which are statically equivalent to the
distributed loading.
The inline wave force affecting a unit length of vertical
flexible pile of diameter D is given by the modified
Morison equation in the form [2].

F = 50pCyD |u-U |(@-0)

+25 x p D* u, (5)

+25 x p (Cy,-1) D? 8,-U)
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F is the total hydrodynamic force per unit length
Cp s the drag force coefficient
Cys-1 is the added mass coefficient

I'Jx and Ox are the velocity and acceleration of the
structure in x direction
u, and u_ are the velocity and acceleration of the fluid

particles in x direction
FORCE ON INCLINED MEMBERS

Morison’s equation is used to find the force affecting a
vertical cylinder. To extend the result to the case of an
arbitrary oriented cylinder, the independence principle is
introduced. The independence principle states that the
inline forces on an inclined cylinder may be expressed in
terms of the normal velocity and acceleration, and the
tangential velocity and acceleration components can be
neglected [3]. Then a generalized vectorial form of
equation (5) is given by [4]

Fs) = 50 p Cp D | u,()-U,(s) | (u,()-U,0)
+25 = p C,, D* i (s) ©)
-25 x p (C,,-1) D* Us)

where (s) is variable dimension along the member

measured from one of its ends (see Figure 1-a), u(s) and u(s)
are the instantaneous water particles velocity and
acceleration at location s. u,(s) and U (s) are their normal
components respectively. U(s), U(s), and U(s) are the
displacement, velocity and acceleration of the member at
()Uy(s), U,(s), U,(s)are their
components respectively.

The velocity vector of the water may be written in the
form:

location normal

u(s) =y ituj+uk M

where u,, u, u, are the velocity components in X,y and z
directions, and ij,k are unit vectors in X, y, z directions,
respectively.

Assume S is a unit vector coinciding with the member
axis [see Figure (1-b). Then S is given by
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S = Si+Sj+Sk 8)

where S, Sy and S, are the direction cosines of the

memberThe normal components of u,1,U, U, U are given
by

u,(s) =[NJu(s)

u (s) =[N]u(s)

. . 9)
U, (5) =[N1UGs)
U,(9) = INTUGs)
here [N] is given by [4]
1-s; -5,8, -S,
[N] =[] - SS*=|-SS 1-S; -S8,|10)
-s5,S, -S,, 1-8;

- Un, (S)
Figure 1-a. Water particle velocity along member i.

If we assume the flow to lie in the X-Y plane ; that is u,
equal zero, then the equations introduced may be reduced
to those given by Chakrabarti [5].

LINEARIZATION OF WAVE FORCES

The velocity squared term in equation (6) may be
approximated by
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| u,s)| u,(9)-2 | u(s) | U (11)

because u,(s) >> U,(s)
using equations (9) and (11) then equation (6) becomes

Fis) = -5 p Cp D | [N] uGs) | [N u@s)

-p Cp D | [N] u()|-[INIUGs)
(12)
+25 n p C,, D? [N] (s)

-25 n p (C,-1) D?* [N] U(s)

The vector function F;(s) along any member i with
length | and diameter D can be divided into a 12
component force vector F,; corresponding to the 12 nodal
displacements at I and J, see Figure (1-b). This is given by

F,=.5pCpDIl|[NJu| [NJu

-pCpyDI|INJu | [NJ U
(13)
+25 n p C,, D*[N] u(s)

-25n p (C,-1) DN U

where u,u, U,ﬁ are the 12 - component vector in the
member’s nodal coordinates and [Np] is the 12 X 12
matrix given by

NOOO
[N.] 050000 14
® 18D ON O (14

0000
where the matrix N is defined by equation (10).
Defining an effective volume matrix and an effective
drag area matrix as
[V] = 257 D* 1 [Ny]
D I [N{]

then we write equation (13) in the form

arw) (15)

[A] = azrw) (16)
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F,=.5p Cp | INJu | [Alu - p C, | INJ u | [4] U
+p € [Nii-p(Cy-DIN T

3
Y iz 5
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1
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(RICNT WANO RULE)
Figure 1-b. Nodal displacement component at nodal
points I and J of member i.

The above equation defines the 12 component nodal
hydrodynamic force vector for one member, member i.

The vector F of the hydrodynamic forces in equation (1)
is given by

»m
F=YF (18)
i=1
where m is the number of members, and the

hydrodynamic forces are to be summed vectorially. From
the above we can write

MU +[CAU+[KIU=[F,) u+[Fpu (19)

where, U, (},U,ﬁ and U are n-dimensional vectors, and

B = Y p Cy [V] 20)

i=1

(Fol =Y 5 p Cp IINjl 4, | [4]) (D)

i=1

[M1]=[M]+Z-: P(Cy-DIV]

i~ 22)
=M]+M,]
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where [M,] is the added mass matrix
Approximating  |[Ny]u;]| by its time averag
<|[Np]y;[> we get

[CT]=[C]*Z: pCp< l Nyl I u >A] (@
i=1

Fp may be given by

Fp = Y59 Cp< | INgly | >4) @9

i=1

A mathematical expression for the time average < |[Ny]
y;|> must be introduced for both deterministic and
stochastic analysis. In case of deep water (d/L> 0.5) we
may write

cosh (ky) = sinh (ky) = 0.5 exp (ky) )

then the total velocity of the wave particle is given by

- foTa2 . Kk ag expky) %
% b ﬁwcosh(kd) o

In case of unidirectional deep water wave, the water
particles move in a plane circular orbit. Assume any
member i of the structure to make an angle ¢ with the
plane of the circular orbit of the water particle, the plane
of the wave propagation, Figure (2). Assume also that at
time t = O the particle is at location (1) shown in Figure
(2). After time (t) the velocity component in x and y
directions are given by

u, = u,sin (@t) \
u, = u, cos (wt) (27 |
the component u, is normal to the member i, and the
component u, has a component normal to the member i
which is given by

W, = u, cos(@t) . sin (6) )

then the total normal component at time t is given by

u, = u, ysin?(wt)+sin*(B)cos?(wt) (29)
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and the time average of (u,) may be givcx; by

x/2
U, = 27“‘ f ysin?(wt) +sin?(B)cos’(wt) d(wt) (30)
0

The integration given in equation (30) can be
approximated using numerical methods to take the form

=/2
[ Vsin®(w) +sin*@)cos’(wt) d(wt) =1+(1 -%)e (1)

from which equation (30) takes the form

nav

u = 2% [ea-2Zyep (32)
T T

X

Figure 2. Calculation of normal average velocity for a
general member.

To find the normal average velocity u, ., in case of
stochastic analysis, both u, and u, have normal distribution

[6].
If two random variables x and y are normal, independent
with zero mean and equal variance, then the function

z = yx* + y? (33)

has a Rayleigh distribution , and its expected value is
given by
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E@ = o % (34)

then we can wrile,assuming that the u, and u, are
normal independent variables with zero mean and equal
variance

E@) =05 (39)

PARAMETRIC STUDY

The effects of the following parameters on the forces
experienced by a jacket type offshore structure are studied
under different values of the drag and inertia coefficients
and wave energy. The parameters are (a) fluctuation in
water surface due to the passage of waves, (b) structure
motion relative to the flow, and (c) non linear form of the
drag force

To study the effect of the above mentioned parameters,
the frame shown in Figure (3) is considered. Each leg of
the frame is supported by a single pile.

!

H
(LRIAN

r N 1
== U

Figure 3. Short and long sides of the space frame and
details of the pile foundation.

Throughout the analysis, only long crested waves are
considered. The direction of the wave propagation is
assumed parallel to the short side of the frame. The effect
of lift force (transverse force) is neglected. Finally, it is
assumed that, the sea state may be described by a P-M
spectrum, given by

2
Su(@) = =& EXP[-p(—£-)9
W oW
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where

g is the gravity acceleration

W is the wind speed at 20 m above mean water level
o is the wave frequency in radian per second

a and § are given by

a = 0.0081

B =074

CHARACTERISTICS OF WAVE FORCES

In this paper, the effect of the different parameters
(a, b, ¢) mentioned above, on the statistics of wave forces
in the direction of the wave are studied.

The frame is subjected to a random wave train using
wind speed 20 m/sec. for the three cases a, b, and c. The
drag and inertia coefficients are kept constant at 1, and 2
respectively. The results of the analysis are shown in
Tables (1-a) through (1-d) and Figures (4-a) through (4-
c). Table (1-a) shows the effect of the factors a, b, and ¢
on the force at the first submerged level. From this table
it can be shown that, in all cases, the force has nearly the
same standard dewviation. The fluctuation in water surface
and the motion of the structure with respect to the flow
have no effect on the Kurtosis. The maximum positive
force is larger in case of considering surface fluctuation
This is because larger parts of the members are
submerged when the velocity has its maximum positive
value. In contrast, the maximum negative value of the
force occurs when the fluctuation in surface elevation is
neglected. The conclusion is that the structure is a drag
dominant structure. For an inertia dominant structure, it
may be concluded that fluctuation in surface has no
significant effect on the force. This is because, both the
maximum positive and the maximum negative
accelerations occur when the surface elevation coincides
with the mean water level. In case of drag dominant
structure, the surface fluctuation has a significant effect on
the force. This is because the maximum positive velocity
coincides with the crest of the wave, while the maximum
negative velocity coincides with the trough of the wave
That means a big difference in the area of the submerged
members in the two cases, which leads to a corresponding
big difference between the positive and the negative
forces. The difference between the positive and the
negative values of the forces in case a, and c, Table (1-a)
explains the shift in the skewness toward a large positive
value.
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Table 1-a. Effect of surface fluctuation and relati
motion of the structure on the force at first submerg
level

-—
Wave force statistics A B C
Mean (ton) 10.8 -128 108
Standard deviation 85 88 85
Skewness (ton) 0.953 -0.215 0.988
Kurtosis (ton) 475 472 4.945
Maximum (ton) 454 420 486
Minimum (ton) -213 -425 -206

Table 1-b. Effect of surface fluctuation and relativ
motion of the structure on the base shear.

Base shear statistics A B C
Mean (ton) 9.2 -2.46 9.11
Standard deviation 186 193 177
Skewness (ton) 0.38 -0.12 031
Kurtosis (ton) 4.04 438 0.04
Maximum (ton) 973 842 809
Minimum (ton) -715 -915 -700

Table 1-c. Effect of surface fluctuation and relative
motion of the structure on the base moment.

Base moment statistics A B C
Mean (ton) 295 -57 297
Standard deviation 4096 4292 3900
Skewness (ton) 0.56 0.12 0.49
Kurtosis (ton) 4.19 4.05 420
Maximum (ton) 20240 19130 19150
Minimum (ton) -15301 | -20439 -14264

Figure (4-a) shows the distribution of the force at th
first submerged level for the cases a, b, and ¢ compare
with the normal distribution. From the figure it is shows
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that the effect of relative motion on the distribution is
minimum.

Tables (1-c) and (1-d) show the effect of the surface
fluctuation and relative motion on the base shear and base
moment. The standard deviation, skewness, kurtosis, and
the mean of both; the base shear and the base moment
seem to be controlled by the behavior of the force at the
first submerged level.

Figures (4-b) and (4-c) show the distribution of the base
shear and base moment. Again, they seem to follow that
of the force at the first submerged level.

wove force (ton) ¢ 10*
[

Figure (4-a). Cumulative distribution of wave force at first
submerged level, wind speed = 20 m/sec Cp =1, Cyy=2.

Bese sheor (ten) « 10"

Figure 4-b. Cumulative distribution of base shear, wind
speed = 20 m/sec Cp = 1, Cy = 2.
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Figure 4-c. Cumulative distribution of base moment, wind
speed = 20 m/sec Cpy = 1, Cyy = 2.

Table (2) shows the statistics of wave force at first
submerged level, using wind speeds 10, 15, and 20 m/sec,
respectively. In all cases, both water surface fluctuation
and relative motion are considered. The standard deviation
of the surface elevation for wind speeds 10, 15, and 20
m/sec are 0.53, 1.2 and 2.14 m respectively with significant
wave heights 2.12, 4.8, and 8.56 m respectively.

Table 2. Statistics of wave force at first submerged level

Wind speed m/sec 10 15 20
Mran (ton) 0.20 213 10.8
Standard deviation 17 420 8s.
Skewness (ton) 1-73E-3 0.35 0.95
Kurtosis (ton) 271 34 4.75
Maximum (ton) 55, 182 454,
Minimum (ton) -54 -117 -213

From Table (2), it may be noted that, the effect of
surface fluctuation is less with reducing wind speed It
becomes less pronounced at wind speed 15 m/sec, and
insignificant  at wind speed 10 m/sec.

It is mentioned before that the effect of surface
fluctuation becomes less important when the structure is
inertia dominant structure. To examine this assumption,
the force spectrum is introduced. Figures (5-a) through (5-
¢) show the force spectra at the first submerged level for
wind speeds 10, 15, and 20 m/sec. Together, with the
overall force spectrum, the spectra for both the drag and
inertia forces are shown.
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wave force spectrum (ton’ .sec/rad) « 10%

Figure (5-a). Wave force spectrum for wind speed 10

m/sec.

wave force spectrum (ton‘,sec/rad) v 107

Figure (5-b). Wave force spectrum for wind speed 15

m/sec.
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Figure 6-a. Base shear spectrum for wind speed 10
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Figure (6-b). Base shear spectrum for wind speed
15 m/sec.
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Table (3) shows the standard deviation of the force at
the first submerged level calculated in the time domain for
wind speeds 10, 15, and 20 m/sec, respectively. the
standard deviation is calculated twice, once using the
linearized form of the drag force and once using the non-
linear form of the drag force. From the table it is clear
that the linearization used, give accurate values for the
variance of the wave force. In all cases the drag and
inertia coefficients were 1 and 2 respectively. If the surface
fluctuation is neglected, the standard deviation of the force
at the first submerged level, calculated by the two
methods, becomes nearly the same and equal to that with
the drag force linearized.

Table 3. Effect of linearizing drag force on the force at
first submerged level for wind speed 10, 15, and 20 m/sec

wind speed 10 m/sec

Wave force statistics | Drag force | Non linear
Inearized | drage force
Mran (ton) 0.28 0.193
Standard deviation 15.00 14.63
Skewness (ton) 14E-3 6.15E-3
Kurtosis (ton) 2.587 2.745
Maximum (ton) 47.22 46.72
Minimum (ton) -42.72 -45.13
wind speed 15 m/sec
Wave force statistics | Drag force | Non linear
Inearized | drage force
Mran (ton) 2385 2.065
Standard deviation 42.30 37.43
Skewness (ton) 0.275 0.414
Kurtosis (ton) 2.705 3.67
Maximum (ton) 153.0 173.0
Minimum (ton) -100.0 -108.0

wind speed 20 m/sec
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Wave force statistics | Prag force | Non linear

Inearized | drage force
Mran (ton) 13.104 10.97
Standard deviation 88.90 80.80
Skewness (ton) 0.506 1.07
Kurtosis (ton) 2.705 525
Maximum (ton) 323.0 465.0
Minimum (ton) -186.0 -198.0

R e

Table (4) shows the standard deviation of the force d
first submerged level, base shear, and base moment fx
wind speeds 10, 15, and 20 m/sec, respectively. Two casts
are considered; firstly the drag force is linearized and the
solution is carried out in the frequency domain Secondl
the drag force is kept non linear and the solution &
carried out in the time domain. The ratio between the
standard deviation calculated by the two methods nearl
equal 1 for all the wind speeds considered except for th
first submerged level at high wind speed.

Table 4. Standard dcviatidt of forces, base shear, and
base moment using non linear and linear forms of the
drag force for wind speed 10, 15, and 20 m/sec.

e e s

Wind speed 10 m/sec ]

ng force | Non linear | ratio
linearized | drag force

force at first submerged level | 15 14.6 1.03
base shear 232 239 0.97

base moment 601.5 5895 | 1.02

Wind speed 15 m/sec

Drag force | Non linear | ratio
linearized | drag force

force at first submerged level 424 3743 1.13
base shear T7.4 71.9 1.08
base moment 1828 1666 | 1.10

Wind speed 20 m/sec Drag force | Non linear | ratio

linearized | drag force

force at first submerged levet | Q1 80.8 1.13

base shear - 181.5 3775 | 1.02

base moment 4160 3917 1.06
———ee—

* solution with linear drag force was carried out using
time domain analysis and has same values obtained using
frequency domain analysis
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Table (5) introduces a sensitivity analysis of the effect of
variation of drage and inertia coefficients on base moment
for differnt wind speeds. From the table it is clear that the
error in calculating either the drage or the inertia
coefficient overweights the error introduced by the
linearization process.

Table 5. Effect of variation of drage and intertia
coefficient on base moment. Values in the table represent

. precentage of the values with Cp= 1and Gy = 2.

wind speed 15 m/sec.
Cy [09]100( 11
Cp
18 |90 ] 91 | 92
20 99 | 100 | 101

22 |(108| 109 | 110

wind speed 15 m/sec.
Cu 09 |100| 11

18 90 |945] 94
20 95.5 | 100 | 104.5

22 [ 1015 [1057] 110
%

wind speed 20 m/sec.

Cy ] 09 [100] 11
&)

18 90 {975 |.+105
20 | 927 | 100 | 107.0

22 | 95.7 J102.7] 110
]

CONCLUDING REMARKS

From the results obtained in this study we conclude the
following :

1. Offshore structures may be classified either as drag
dominant or inertia dominant structures. The
classification must be carried out for all ranges of wind

speeds.
2. The non-lincar drag term of Morison equation causes

a deviation of the forces distributions from Gaussian,
as indicated by Kurtosis value, for these distributions
greater than 3. Thus the non-linear drag forces
increase the probability of extreme values of structure
response.

In case of linearizing the drag term of Morison
equation, the distribution of wave forces are Gaussian,
if we ignored surface fluctuations. The method
introduced in this research to linearize the drag forces
is accurate in calculating the force standard dewiation.
In case of considering surface fluctuations, the non-
linear drag forces cause positive skewed wave force
distribution, see figure (4-a).

Frequency domain solutions were much faster than
time domain solutions. For example, we have noticed
that for the space frame considered the time ratio
between the two methods was about 1:30. The
frequency domain solutions require linearization of the
drag force term of Morison equationAlso, it is difficult
to incorporate the effect of currents in response
computation.
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