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ABSTRACT

In this work the state space formulation for gencr.alized thermoelastic one dimensional problems with a heat
source is presented. The technique is applied to a half-space problem with a plane distribution of heat sources
on its boundary. Numerical results for the temperature, displacement and stress distributions are given and

illustrated graphically.
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INTRODUCTION

The theory of generalized thermoelasticity with one
relaxation time was introduced by Lord and Shulman [1]
for the special case of an isotropic body not subject to the
effect of heat sources. This theory was extended [2] by
Dhaliwal and Sherief to include both the effects of
anisotropy and the presence of heat sources. In this theory
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a modified law of heat conduction including both the heat
flux and its time derivative replaces the conventional
Fourier’s law. The heat equation associated with this
theory is a hyperbolic one and hence automatically
eliminates the paradox of infinite speeds of propagation
inherent in both the uncoupled and the coupled theories
of thermoelasticity. For many problems involving steep
heat gradients and when short time effects are sought this
theory is indispensable.

Due to the complexity of the partial differential
equations of this theory the work done in this field is
unfortunately limited in number. Among the theoretical
contributions to the subject are the proofs of uniqueness
theorems under different conditions by Ignaczak {3-4] and
by sherief [5]. The state space formulation for problems
not containing heat sources was done by Sherief and
Anwar in [6] and the boundary element formulation was
done by Anwar and Sherief in [7]. Some concrete
problems have also been solved. The fundamental
solutions for the spherically symmetric and the cylindrically
symmetric spaces were obtained by Sherief [8] and by
Sherief and Anwar [9], respectively. A two dimensional
punch problem was considered by Sherief and Anwar in
[10]. The same authors have also solved some problems
involving cylindrical regions in [11] and [12].

In dealing with generalized or coupled thermoelastic
problems the potential function approach is often used.
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This is not always the most suitable approach. As was
discussed in [13], this is mainly due to two reasons. The
first is that it is preferable to formulate the problem in
terms of the quantities with physical meaning since the
boundary and initial conditions of the problem are related
directly to these quantities. The second reason is that the
solution for a physical problem is convergent while that of
a potential function is ,unfortunately, not always so. The
first to introduce the state space formulation in
thermoelastic problems were Bahr and Hetnarski [13].
Their work dealt with coupled thermoelasticity in the
absence of heat sources. This work was followed by the
work of Sherief and Anwar [6] whose work dealt with
generalized thermoelasticity when there are no heat
sources. The present work is an attempt to generalize
these results to include the effects of heat sources. The
results obtained are used to solve a half-space problem
with a plane distribution of heat sources on the boundary.

FORMULATION OF THE PROBLEM

We shall consider a homogeneous isotropic thermoelastic
solid occupying the region 0 < X' < ©© | whose state
depends only on the space variable x* and the time
variable t. We shall also assume that the initial state of
the medium is quiescent. The governing equations for
generalized thermoelasticity with one relaxation time in
the non-dimensional form consist of:

1. The equation of motion

pr Ie-p 20 g2t M

2. The generalized equation of heat conduction

o o0, Fo, (a"' - ]-Q-f LR
ax: ot a?r “|oxdt  “axdt ¢ ot

3. The constitutive relations

= 2—-
o=p = bo, (3)

where in the above equations, we have used the following
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non-dimensional variables

x=VéxX, u=Vu, t= V5 ,

=Vi81,,0=0/p andQ = pQ/ kT, & V-

From now on we shall consider a heat source of the form
Q = Q, 3(x) H(Y),

where 8(x) and H(t) are the Dirac delta function and the

Heaviside unit step function, respectively and Q, is a

constant.

Taking the Laplace transform with parameter s (denoted
by a bar) of both sides of equations (1-3), we arrive at

[i —sz)l—x=aﬂ 3 (4

(i—s rs)e gs(l+1, s)——a:, ®)
ax? ax

5 ﬁ’a“ ©

where a = b/ﬂ2

Choosing the state variables to be 6, u,f” and u’, where
dashes denote differentiation with respect to x, equations
(4-5) can be written as

8-0- =f

XN .o,

3 @)
ou -,
=5 =y, 8
7% u ®)

l+t s

8 =(s+% s’)O*z(sn s?)u’ Q.é(x){ ML)

]. ®
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ax

=s?0+a0 . (10)

The above equations can be written in matrix form as

% = A(s) V(x,5) +B(x,9) , (D
where
[ B(x,5)
. u(x,s)
v(x,s) = - »
8'(x,8)
[ 0/(x,)
0 o0 1 ¢
0 0 0
A(s) = s+tosz 0 0 g(s+1082)
0 s a 0 J
and
. 0
Bes) =0, 800 L7520
0

In order to solve the system (11) , we need first to find
the form of the matrix exp(A(s) .x).

The characteristic equation of the matrix A has the form

K- K2 [(1+€) (s+75D) + 57 + 8> (1+1,8) = 0 (12)

where € = g a.

The roots of this equation, namely, kl2 and kzz ,satvisl"‘y.
the relations

k2 + k? = (1+6)(s+1,8) + & (13-a)
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k2 k= 2 (1+1,9) (13-b)

The Taylor series expansion of the matrix exponential is

i exp[ A(s) . x]= Y -I%[A(s).x]". (14)

=0

Using the well known Cayley-Hamilton theorem, this
infinite series can be truncated to

exp [A (s)x] = ag (x,s) [+a; (x;5) A+a,
(x,8)A%+a5(x5)A”, (15)

To . determine the coefficients a; -
Cayley-Hamilton theorem again to obtain

a; , we use

exp (k;x) = a5 + a, k; + a, kl2 + ag kl3 3
2 3
exp (- kyx) = ag-a; k; + a, k" -az k;” ,
; 7 2 3
exp (K, x) = a5 + a; ky + a, k)" + a3 ky”

exp (- kyx) = a5-a; k, + a, k22 - ay k23 .

The solution of the above system is given by

B kl2 cosh(k,x) - kgzcosh(klx)
KK :
g (kifk) sinh(k, ) - Gy k) sinh(k; x)
ki -k

_ cosh(k; x) - cosh(k,x)

TR .

B k, sinh(k, x) - k, sinh(k,x)
 kkG-K)

(16)

Substituting the expressions (16) into (15) and computing
A% and A | we obtain after some lengthy algebraic
manipulations, exp [A(s).x] = L(x;s) = [lij(x,s)],i,j =1234

D 191



SHERIEF: State Space Approach to Ceneralized Thermoelasticity

where the entries lij(xs) are given by 3 g .
_s(l+t,8) [k (K - s?)sinhk, x - k, (k; - s*

1
l k, K, (k{ -k3)
- (k,z-s-tosz)coshlgx—(k.f-s—tosz)cos]
1 13?=gs3(1*»tos)(coshklx-coshk.lx)
K -k
1 gs3(1 +1,8) [k, sinhk x -k, sinhk,x]
2= 2.2 : (k? -s?)coshk, x - (ki - s?)coshk, x
ko (- 1) L e ,
K -1
| k, (kj -s?)sinhk, x -k, (ki -s?)sinhk,x L, - gs (1 +1,5) (K sinhk, x - k; sinhk, x)
? ky Iy (K - k) ' K -1
B as(1+ 1t s)(coshk, x - coshk, x)
1“=gs(l+t°s)(coshklx—coshk2x) ’ e K2 - 1 ’
ki -1
1 s? [k2(k,2 -s -‘cosz)sinhklx-kl(kg2 -s-T,8
42~ 2 .2
L as(1+1,s)(k,sinhk x -k, sinhk,x) ki K, (ky -k )
1.5 ’
klkz(kxz -k;)
B a (k,sinhk, x -k, sinhk, x)
2 2 2 2 “ klz-k: ’
L, - (k; -s?)coshk, x - (k; - s?)coshk, x
ki -k ’
- (k? -s -t,s?)coshk, x - (k; - s -t_5*)coshk
“ ki -k
l7J_a(ooshklx-<>oshk2x)
ki -k ’ :
It should be noted here that we have used equations
(13a) and (13b) repeatedly in order to write these entries
in the simplest possible form. It should also be noted that
. ) this is a formal expression for the matrix exponential. In
k| ?)sinhk, x - k, (k] A
L,= Ry sy ek -k v v, yenhby ,(17)  the physical problem 0 < x < © , we should suppress the

kK (K} - k) positive exponentials which are unbounded at infinity.
Thus we should replace each sinh(kx) by -{exp(-kx) and
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each cosh(kx) by 1 exp(-kx).
We return now to system (11) whose formal solution can
be written in the form

V(x,5) =exp(A(s).x)| v(0,) + f exp(-A(s).z) B(z,S)dZ}lfi)
0

Using the integral property of the Dirac Delta function,
namely

[ 3 (2) f(z) dz = 2£(0) ,
0

equation (18) takes the form

Wxs) = Lixs) 70s) + HE)],  (19)
where
k k, +s?
25k, ( + 1)
H(s) - -Q(1+1,8) 0
2s 2

=

20k, 1)

Equation (18) gives the complete solution of the
problem in the Laplace transform domain in terms of the
boundary conditions of the problem represented by the
vector ¥(0,s) and the applied heat source represented by
H(s).

APPLICATION TO A HALF SPACE PROBLEM

We shall consider a half space subject to the following
boundary conditions

(1) The surface x = 0 of the half-space is stress free, i.e.
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o(@Ot) =0. ord(0s)=20. (20)
(2) The non-dimensional heat flow at the boundary is
given by

q (O = 4 H(t) Q,, or (05 = Qy/2s . (21)

Using the generalized Fourier’s law of heat conduction,
in the non-dimensional form, namely

q+1;('l=_ﬂ
° ax ’

we get on taking Laplace transforms

1+
36 __Q,(1+7,9) @)
X 2s

This gives one of the four components of the initial state
vector ¥(0,s). To find the remaining three components ,
we substitute the value x = 0 in both sides of equation
(18) to get a system of equations whose solution is given
by '

8(08) = Q,ak Kk, (k, +k,)
2s2[s2+ (1 +e)k k,]
05— L2kl
: 2s?[s?+(1 +e)k k]
(23)
6’(0,5)=M,
2s
G/(O,S)= Qoaklk2(kl+k2)

2s?[s?+(1 +e)k k]

Substituting from equations (23) into equation (18), we
obtain

2_ 2yekix_ 2 2y, K
8(x,s) = Q°k‘k12[(kl : )ez e ]. (24)
2s%(k, -k))[s* +(1 +e)k,k,]
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Qe e o

) .
g - (L ek K,

Substituting from equations (24) and (25) into equation
(6), we get

Qoaklkz[e'k"—e'k"]
2(k -k)[s?+(1 +e)k k]

a(x,s) = p* (26)

INVERSION OF THE LAPLACE TRANSFORM

In order to invert the Laplace transforms in equations
(24)-(26) we shall use a numerical technique based on
Fourier expansions of functions.

Let g(s) be the laplace transform of a given function

g(t). The inversion formula of Laplace transforms states
that

ct+iw

-1 stz
g Py f e*'g(s)ds,

c-iw

where c is an arbitrary positive constant greater than all
the real parts of the singularities of g(s). Taking
s=c+ 1y, we get

e % b oo )
t)=— [ e g(c+iy)dy.
0 2n_f_ g(c+iy)dy
This integral can be approximated by
eiktarg(c +ik Ay)Ay.

Taking O y = n/t; , we obtain
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8® =°T“['A§(c> + Re( ): e M g(c+ikn/t)
1 k=1

For numerical purposes this is approximated by the
function

c N
z..(t)-‘t—'[%i(c) +Re( Y ™M i(c*iktln)]. @
1 k=1

where N is a sufficiently large integer chosen such that

ct 4
et_Re [N g(c +iN n/t)]<e,
1

and € is a preselected small positive number that
corresponds to the degree of accuracy to be achieved.
Formula (27) is the numerical inversion formula valid for
0 <t<2t; [14]. In particular we choose t = t; , getting

ct N
B0 =2 [%F@ R T (-DE(e +mm]} 29)
k=1

NUMERICAL RESULTS

The copper material was chosen for purposes of
numerical evaluations. The constants of the problem were
taken as

€ = 00168, f> = 3.5and 7, = 0.02.

Figure 1. Temperature Distribution.
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The computations were carried out for two values of
time, namely for t = 0.25 and t = 1. Formula (28) was
used to invert the Laplace transforms in equations (24) -
(26) giving the functions 6(xt) , u(xt) and o(xt),
respectively. The results are illustrated graphically in
Figures (1) and (3). These results show that the
temperature increment 6 decreases with increasing x for
a given value of t while it increases with t for a fixed value
of x. The graph of 6 is shown in figure (1).

In Figure (2), the displacement distribution is drawn
against x. It was found that u starts from a negative value
at x = 0 and increases to reach a maximum positive value
at a position given approximately by x = t. The value of
u then decreases smoothly to reach zero.

o]

-8.3-

Figure 2. Displacement distribution.

The stress distribution is shown in figure (3). The stress
starts with a zero value in accordance with the boundary
conditions. Then decreases for values of x less than t
approximately where it reaches a negative minimum value.
The stress increases after this value to reach zero while
remaining negative.

The important phenomenon observed in all computations
is that the solution of any of the considered functions
vanishes identically for x > x.(t), where x'(t) is a
particular value of x depending only on the choice of t and
is the same for all three functions. This value is
approximately equal to 1.624 for t = 0.25 and equal to
3.745 for t = 1 and is the location of the wave front. This
demonstrates clearly the difference between the coupled
and the generalized theories of thermoelasticity. In the
first and older theory the waves propagate with infinite
speeds, so the value of any of the functions is not
identically zero (though it may be small) for any large
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value of x. In the generalized theory the response to the
thermal and mechanical effects does not reach infinity
instantaneously but remains in a bounded region of space
given by 0 < x < x.(t).
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Figure 3. Stress distribution.
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