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ABSTRACT

Experimental models, such as sand, electric analogue and viscous flow models are extensively used to study the
seepage under hydraulic structures. Effects of limiting the model lengths of the upstream and the downstream
seepage surfaces and the model thickness of the pervious stratum are studied here, for a floor with an upstream
or a downstream sheet pile, using the finite element method. The results indicate that exit gradients are more

sensitive to such limitations than the uplift pressures on the floor.

INTRODUCTION

Experimental models for the problems of seepage under
the floor of a hydraulic structure are extensively used to
verify mathematically derived solutions or to overcome
difficulties met with in such derivations. Sand, electric
analogue and viscous flow (Hele-Show) models are the
most commonly used ones [1,2,3]. It is difficult, however,
to model the infinite lengths of the upstream (U/S) and
the downstream (D/S) seepage faces, which is usually the
case for the actual prototype problem. Similar difficulty
may be also encountered in modelling the depth of the
permeable stratum beneath the floor. Elganainy [4]
obtained a closed-form solution for the case of a simple
flat floor founded on a pervious stratum, using the
conformal mapping technique. He concluded that, in
general , limiting the lengths of the U/S and D/S pervious
beds will result in a relatively small decrease in the uplift
pressures on the U/S half of the floor and a relatively
small increase of the pressures on the D/S one while
causing an appreciable rise in the relative exit gradients
along the D/S bed. The effects of varying the thickness of
the pervious stratum were negligible. Muthukumaran and
kulandaiswamy [5] investigated the case of a weir. with a
sheet pile at the center founded on an impervious stratum
of a limited thickness, for a symmetrical lengths of the
U/S and D/S seepage surfaces. The conformal mapping
technique was used to obtain an analytical solution for
that problem. The minimum length of the U/S and D/s
surfaces required in the model to keep the difference in
quantity of seepage, between model and prototype , within
1% was determined and graphically represented for
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various geometric dimensions.

In the present study, the more practical case of a weir
with an U/S or a D/S sheet pile is investigated, using a
finite element model. Unsymmetrical lengths of the
secepage surfaces are also considered as well as the
symmetrical ones, for an impervious stratum of a limited
thickness.

THE PHYSICAL MODEL

i /S _W.L. (Datum
b 9
d O! Aol A
D ' 4
Y ! 4
® ,
4 ¢ ! 4
As .. i lDEGEE 4 e T Ly
il Y I e B L2 4
“
y 4
T 2
I'—"X l—-l1 4
2
i e R S R s e e e s s oeswec /]

Figure 1. The physical model.

Figure (1). Shows the physical model of the problem
which represents the experimental simulation of the actual
prototype conditions for which the U/S and the D/S
seepage surfaces extend to infinity. The floor, bg, is of a
length B and has either an U/S sheet pile, bed, or D/S
one, efg, of a length D. An effective head, H, acts on the
floor. The U/S seepage face, ab, and the D/S one, gh,
have, in general, different lengths, L, and L, , respectively.
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The permeable stratum beneath the floor is assumed to be
homogenous and isotropic, of a thickness T and a
permeability coefficient k. These parameters can be
expressed in dimensionless forms in terms of the floor
lengthas:1, = L,/B,, =L,/B,d=D/B,t=T/B
and h = H/B .

GOVERNING EQUATION AND BOUNDARY
CONDITIONS

A two dimensional, steady state flow through a
homogenous isotropic soil is governed by Laplac’s
equation:

=2 M

in which ¢ = k h, , is the velocity potential at any point
in the flow domain , h; = p/y + z, is the piezometric
head, p is the pressure at that point, z is its position and
y is the unit weight of water.

Equation (1) may be alternatively written in terms of the
stream function ¥ instead of ¢ .

Solving Laplac’s equation along with the appropriate
boundary conditions yields the velocity potential ¢ .
Hence, the pressure at any point can be directly
calculated. The velocity gradient, I, , at any point on the
exit surface, gh , can be also obtained from the relation :
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in which v, is the exit velocity.

The boundary conditions associated with the current
problem are as follows :

1. ¢ = kH along the U/S inlet face , ab ,

2. ¢ = 0 along the D/S exit face , gh,

3 %=Oalongthcshectpilc,bcdorefg,the

horizontal floor, de, the upper surface, ij, of the

impervious substratum and the artificial vertical

boundaries of the model, aj and hi, where n is the
normal direction to boundary.

The finite clement technique has been used to get a

numerical solution for equation (1) along with
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abovementioned boundary conditions. Figure (2).
illustrates the mesh arrangement used. A summary of the
derivation of the finite element equations is given in
appendix (A). A computer program , FEM2D [6], was
used to calculate the velocity potentials at all nodes as well
as exit gradients at the D/S exit face.

P e S — T g ——
@ skH rg"’ 3% .0 ‘ ohs
r 9 ;
© : ¢’
\I-L .
s 1
- g -
&
L F‘"’ Y
Y

Figure 2. The finite element model.
VERIFICATION OF THE MODEL

Results obtained from the finite element model, with
l,=1,=2.0, have been compared with those based on the
analytical, conformal mapping solution [1] , for the case of
an U/S sheet pile, with infinite U/S and D/S seepage
surfaces. The very good agreement between these results,
as shown in Figure (3), confirms the accuracy of the
model.
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Figure 3. Comparison bectween F.EM. and the
analytical soultion (U/S sheet pile, d=030, t=2.0).

ANALYSIS OF THE RESULTS

The effects of limiting the lengths of the U/S and the
D/S seepage surfaces and the thickness of the permeable
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stratum on both the uplift pressure distribution on the
floor and the exit gradients behind it have been
investigated.

First, the case of centrally positioned floor ( case A,
l;=L,=1), which is usually adopted in the experimental
model, is discussed. This is followed by a discussion for
the case of an eccentrically positioned floor ( case B, |; #
, ). For both cases, two different positions for the sheet
pile are considered : an U/S sheet pile and a D/S one.

CASE A: Central Floor (I, =L, =1)
a - Uplift Pressures

Figures (4-a,b) show the effects of limiting the relative
length, L, of the U/S and the D/S seepage surfaces on the
uplift pressures acting on the floor, for a relative thickness,
t, of the permeable stratum equals to 0.5 and 20 ,
respectively. For both positions of the sheet pile, three
different values of the relative depth, d, of the sheet pile
have been considered, namely d = 0.0, 0.15 and 0.30 .

Considering the case of a floor with an U/S sheet pile,
it is found that uplift pressures are slightly reduced as the
relative length 1 decreases. The maximum reduction always
occurs at floor points adjacent to the sheet pile. Compared
to the case of 1 = 2.0, which can be practically considered
as infinity, the maximum reduction corresponding to | =
0.5 is about 2.4% for d = 0.15 , and rises to 3.5% for d
= 030, with t = 0.50 for both cases. Such a reduction
becomes almost negligible for the ease d = 0.0, ie. a
simple floor with no sheet pile. As the thickness t of the
pervious stratum increases to 2.0 , the maximum relative
reduction slightly drops to 2.1% , for d = 0.15 but it rises
to 8.5% , for d = 030 .

As for the case of a floor with a D/S sheet pile, it is
found that similar but opposite variations occur. A
pressure increase will result from using a limited length,
L, for the seepage surfaces.

b - Exit Gradients

The effects of introducing vertical impervious boundaries
on the exit gradients are shown in Figures (5) and (6), for
the two cases of a floor with an U/S sheet pile and with
a D/S one, respectively. Referring to Figure (5-a) , it is
clear that exit gradients for an outlet surface of a limited
length will be less than the corresponding ones for an
infinite outlet surface, down to a certain distance from the
floor end, then they become greater from thereon. For
example exit gradients, I;, for | = 0.5 and d = 0.0 are
less than I,, for 1 = 2.0 and d = 0.0, down to x; = 0.15
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,whcmxlistherchﬁvcdistanoeﬁ'omthcﬂooxend,
Figure (1), then they become greater after that point. As
the length, d, of the sheet pile increases, the crossing

points move farther to the D/S.
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Figure 4. Effect of the vertical boundaries on the uplift

pressures (1; =1,=1).

Higher exit gradients will result when the thickness, t, of
the pervious stratum is increased from 0.5 to 2.0, as
revealed from Figures (5-a) and (5-b). This is due to the
increase of the total seepage discharge beneath the floor.
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The crossing points become closer to the floor end as the
thickness, t, increases.
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Figure 5.(a) t= 0.5
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Pigure 5.(b) t= 2.0

Figure 5. Effect of the vertical boundaries on the exit
gradients, for an U/S sheet pile. (1;=1,=1).

For a floor with a D/S sheet pile, no crossing points
exist and exit gradients for 1 = 0.5 will be always greater
than those for | = 2.0, Figure (6). Moreover, the effects
of reducing the length 1 are more significant for larger
thicknesses of the permeable layer.

Table (1) presents some values of the ratio (I;/I.,),
where I; and I, are exit gradients corresponding to | =
0.5 and 2.0, respectively, at the two points x; = 0.025 and
0.50 .

C 420

Table 1. Values of (I,;/1,;)

t d ) x; = 0025 | x; = 050
0.0 0.75 73
0.50 0.3 (U/S Sh.P) 0.91 1.75
03 (D/S Sh.P) 112 2.10
0.0 0.90 1.58
" 0.3 (U/S Sh.P) 0.78 139
03 (D/S Sh.P) 126 1.80

CASE B: Eccentric Floor (1,#1,)

Practical considerations may necessitate using unequal
lengths for the U/S and the D/S seepage surfaces in the
model. These cases are discussed below, for a constant
thickness of the pervious layer, t = 2.0 .

a - Uplift Pressures

Figures (7-ab) illustrate the effects of varying the

lengths 1, and L, of the U/S and the D/S scepage surfaces
on the uplift pressures, for sheet pile depths, d = 0.15 and
0.30, respectively. The case of I, = [, = 20 (curve 5) can
be practically considered very close to the actual prototype
conditions of I; = I, = © , hence other cases will be
compared with it. From Figure (7), it is clear that a
shorter inlet surface ( 1; < L, ) will reduce the uplif
pressures, and vise versa, for both cases of an U/S sheet
pile and a D/s one. Relative pressurc head deviations
(AU/U. %) at a point just D/S of the U/S sheet pile and
at the point just U/S of the D/S sheet pile are shown in
table (2), for some combinations of |, and L, , for d =
0.15 and 030 .

Table 2. Relative Pressure Head Deviations (AU/U. %),
Close to the Sheet Pile.

cavel. L 1E ] R d = 030
N U/s UJ/S SuP |D/S suP
T | 05|20 71 |-133| 180 | -1z0
s |15]|20] 07 | 33| s 11
6 |20 15| 07 |17 ] o9 27
9 |20 05| 57 |183] 99 20
— ﬁ _—— ]
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Figure 6. Effect of the vertical boundaries on the exit
gradients for a D/S sheet pile, (1,=1,=I).

It is noticed that increasing the length of the U/S sheet
ple from 0.15 to 030 will increase all deviations
significantly. On the other hand, similar increase of the
D/S sheet pile will produce smaller increase of the
positive deviations and a smaller decrease of the negative

ones.
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Figure 7. Effect of the vertical boundaries on the uplift
pressures (case B:1; #,1,), for t = 2.0.
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Figure 8. Effect of the vertical boundaries on the exit gradients (case B:1; #1,), for t=2.
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b - Ext Gradients

Figures (8-a,b) show the effects of using different
lengths, 1; and 1, , on the relative exit gradients (I./h) ,
for the cases of an U/S sheet pile with d = 0.15 and 0.30
, respectively. As the length 1, of the exit surface is
decreased from 2.0 to 0.5, for a constant value of I; = 2.0
, appreciably higher exit gradients will result for most of
that surface compared to the case of I; = I, = 2.0 (curve
5). Exit gradients will be reduced, however, for a limited
length next to the floor. They will decrease, but with a
much smaller rate, as the length 1; of the inlet surface is
decreases from 2.0 to 0.5, for a constant value of 1,=2.0.

The lengthening of the U/S sheet pile from 0.15 to 0.30

will, as expected, slightly reduce the exit gradients but the
effects of varying l; and 1, are very similar.

Turning to the case of a D/S sheet pile, Figures (8-c,d),
it can be concluded that the variation of 1, and 1, will
produce similar effects on the exit gradients as for the
case of a U/S sheet pile, with two exceptions. A narrow
zone exists for which exit gradients increase slightly as the
inlet length is reduced,for d = 0.15 . Also, the lengthening
of the D/S sheet pile from 0.15 to 030 has more
prominent influence on variation of the exit gradients with
lyand I, .

CONCLUSIONS

The effects of limiting the model lengths of the U/S and
D/S seepage surfaces and the thickness of the pervious
stratum have been investigated, using the finite element
technique, for a floor with an U/S sheet pile or a D/S
one. Compared to the prototype conditions of infinite U/S
and D/S seepage surfaces, it is found that if equal lengths
are adopted for the U/S and the D/s seepage surfaces,
the resulting deviations in the uplift pressures will be
relatively small. Exit gradient deviations are, however,
significant and increase for larger thicknesses of the
pervious stratum. If, on the other hand, different lengths
are used, these deviations will be greater and the exit face
length will have an appreciable influence on the exit
gradients. It can be stated that using equal inlet and exit
lengths 1.5 to 2.0 times the floor length is sufficient to
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keep the resulting deviations within 3% .
APPENDIX
A. The Finite Element Solution

A finite element model [6,7] has been used to solve the
governing equation (1) along with the aforementioned
boundary conditions. If o represents an approximate
value of the potential ¢ , equation (1) may be rewritten as

¥® = R ©)

in which R is the residual. The value of ® for a specific
element may be expressed as a linear function of the
nodal values ¢ :

Ja 1
® - Y N ¢, @12.D @

n=1

in which N are linear interpolation functions and I is
the number of nodes in the element.

Substituting the value of ® into equation (3) and
applying the Galerkin’s conditions, the following equation
is obtained :

zl:fvw.dho ©)

n=1 A

in which A is the flow domain.
Integrating by parts and making use of the Green-Gauss
theorem, then equation (5) yields :
Jso

B ) 5

» j N_ g, ds =0 (m=12,.7) ©)

in which A° is the element domain, S is the boundary of
the domain and q, is the normal flux across the element

boundary.
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Equation (6) can be also written as follows :

Y ko 4:=F; ™

+ Fay g - ]]dxdy ®)

L m- ml m‘] m- ml m.
P el 3

Fr=[N_q,ds ©

For the present case, k°® is symmetric, i.e. kK, = kK, -

Equation (7) represents the finite element form of
equation (1), for the element n of the mesh. Considering
all elements, a set of simultancous linear equations is
obtained which can be written as :

(k] {®} ={F} (10)

where (k] is the global stiffness matrix, {®} is the global
vector of the unknown potentials to be determined, and
{F} is the global nodal force vector.

The final solution is obtained form equation (10) after
the application of the boundary conditions.
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