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ABSTRACT

A theoretical analysis of non newtonian flow effects in squeeze film configuration is presented with particular
reference to conical and spherical bearings. The material model taken is that of the Stokes couple stress fluid.
The effects of the material constants of the fluid on the bearing characteristics, namely the load - carrying
capacity and film thickness-time relationship, are discussed. It is found that bearings with couple stress fluid as
lubricant have greater load - supporting capacities and considerably longer squeeze film time than in the case

of newtonian fluid.

1. INTRODUCTION

Non-Newtonian behaviour is observed in various
lubrication processes as a consequence of severe
operational requirements, use of additives, use of
lubricants with long chain molecules or even use of a
lubricant contaminated with dust or metal particles. This
lubricant containing long chain molecules or suspended
particles has to be represented by proper constitutive
equations in any theoretical model. Various theories have
been proposed to describe the peculiar behaviour of fluids
which have a microstructure such as those containing
additives, suspensions or granular matter. These theories
and their applications have been reviewed by Ariman et al
[1,2].

In all microcontinum theories the simplest generalization
of the classical fluid mechanics theory to allow for polar
effects such as the presence of couple stresses, body
couples and a non-symmetric stress tensor is that
proposed by Stokes [3]. The basic equations of motion of
fluids with couple stress are,
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Where V,F and T are the velocity vector, the body force
vector per unit mass and the body couple vector per unit
mass, respectively, p is the density, P is the pressure, { and
p are the classical viscosity coefficients and 7 is a material
constant peculiar to a fluid with couple stress.

This couple stress theory of fluid has found wide
application in various lubrication problems [4-9]. It was
established theoretically that the presence of additives in
the lubricant has significant effect on bearing
characteristics, i.e, increases the load capacity and ensures
the decrease in coefficient of friction.

The present paper is an extension of the classical
squeeze film problems in conical and spherical bearings
[10] to the case of fluid lubricants with couple stress.

2. ANALYSIS

When the lubricant is an incompressible couple stress
fluid, the inertia forces are negligible and body forces and
couples are absent, the governing fluid flow equation (1)
and (2) simplify to

VV=0 3
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2.1 Conical Bearing

Imposing the usual assumptions of lubrication theory, the
governing equations (3) and (4), in polar co-ordinates, are,

l1am  ow _,

5
r or oz )
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£ - dir 0 = i by B e
or az? azt
The boundary conditions are,
u=ﬁ=0 at z = 0H
az2
w=0 at z =0 (7
w=H=£{-=-VE at z=H
dt
Where,
E = sin (),

R = Er, H = EH,

Solving equation (6) subject to the boundary conditions (7)
gives the following velocity distribution,

i cosh( 212—H)
e z?-Hz +26¥(1 - ; (8)
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2e
where,
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B

Integration of equation (5) across the fluid film and using
equation (8) with the boundary conditions (7) gives the
modified Reynolds’ equation,
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Introducing the dimensionless quantities,
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Equation (9) takes the form,

4 {ﬁ«p(r e } SRR
dR dR E*

where,
ot ,H) =1 - 1.2 + 2:‘ tanh(ﬁ)
(tH?  (zH) 2

Integration twice with respect to (R)) yields

= R? C,
P=-3 R +

InR G, (11)
E‘e(t,H) ¢(t,H)

where C, and C, are integration constants.
Two cases arise;

A full cone and full conical seat, Figure (1-a), and
truncated cone and truncated conical seat open at each
end, Figure (1-b).

2.1.1. Full cone and Full Conical Seat
In the case of full cone and full conical seat, Figure (1-

a), the appropriate boundary conditions of the pressure
are,

(12)
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By using equation (11) with the boundary conditions (12), Newtonian fluid [10]. That is,

the pressure distribution is, P 3 {1~RY 18
= (18)
Pra citn 30 Sops G (13)
E‘e(x , H) L (19)
2E*
The load capacity is given by, and
anl ;1 1
" T R 0@
F = [ 2zRPdR (14) -
0

or in dimensionless form becomes,

3 seat v u F cone
FH,
WVR;

P =

1
= 2% rl-’l-ldl-l

which on using equation (13) gives,

F = 4— (15)

2EB‘e(t , H)

To obtain the expression for the time of approach let,

VR, -
p - 224§ (16)
H, Figure 1-a. Full conical seat.
since
dH, £
Vou < z cone
& VUF —
then substituting this into equation (16), the e I'-—R 3 a5 |

nondimensional time of approach is, seaf g ;

dH
Ft 3n o (17)

AT = 2= 4 73 oy

— "l:l

For small values of n (or for large 1), equation (10) shows
a7
¢(t,.H =1 ;

consequently, equations (13) , (15) and (17) correspond to

the classical case of aquocze  flett et Figure 1-b. Truncated conical seat.

Figure 1. Conical bering configuration

Alexandria Engineering Journal, Vol. 31, No. 2, April 1992 A 381



BEDEWI: Analysis of Couple Stress Fluid Squeeze Films

2.12. Truncated Cone and Truncated Conical Seat
Open at Each End

For the case of truncated cone and truncated conical

seat open at each end, Figure (1-b), the appropriate
boundary conditions of the pressure are,

when R I_ll

when R

(21

i I
o O

By using equation (11) with the boundary conditions (21),
the pressure distribution is,

E‘e(x,H) In(R,)

The dimensionless load capacity is,

FH,
WVR;

Pre =2n [P

dR (23)

P -

which on using equation (22) gives,

§=M{(l+§5+ “-Rﬁ} i

2E*e(t,H) R,

Substituting (V = -Sdl.t—[o) into equation (23), the
nondimensional time of approach is,

'}- i,
K ﬁ:’(f.ﬁ)

_ 2x(1-R) i *(1-!'(,’)
AT T{(1 R) = }

If (R, = 0) equations (22), (24) and (25) reduce to
equations (13), (15) and (17), respectively, of the full
conical seat. Equations (22), (24) and (25) correspond to
thcdassialcascofsqueczcﬁlmconﬁgunﬂonwith
Newtonian fluid [10] when T — ©0, That is,

P=21a-R)-q-grya® (26)
In(R,)

4
E 1
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= 1 i 1-R
§_ 3% -RY T (]
2E* In(R,)

*—3‘”(1 :Rll) {(1 4»!—(,2) + i _F:—)} X
4E In(R)) 28)

and AT-=

AL
&%
2.2 Spherical Bearings
Imposing the usual assumptions of lubrication theory, the

governing equations (3) and (4), in spherical co-ordinates,
are,

1 d ! ow _
Sin(0) » (u sin(0)) RE =0 (29)
8-d1r0-—l§£+ué-né (30)

where,, the radial co-ordinate r = z + R and R » z,
therefore

r'= R and
The boundary conditions are,

at z=0,H

w=0 at z=H (31)
and w =H=% = -Vcos(6) at z=0

u=é=0
2

Solving equation (30) subject to the boundary conditions
(31) gives the velocity distribution as,

1 dP “h(zzz;u)
U*'ZH—RE zz—Hz+282[1- H ] (n)
O@(z)
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&-1n
m

Integration of equation (29) across the fluid film and
using equation (32) with the boundary conditions (31)
gives the modified Reynolds’ equation,

i{ sm(@E’(1 - 122 , 24 tanh(-}—{—)]g}
d H?  m o 2¢de
= - 6 uR® V sin (20) (33)

Introducing the dimensionless quantities,

e = C = H

B e— > C - —_— = P—
LA R e
‘t = _R.. ¥ k = l ,tﬁ = E
€ 2 €

P - PC? e FC3 p tFC?
pR2V pRYV uR*

equation (33) takes the form

d ; =3 - dp =
S deal e (34)
m { (0)H o@(t,H) de} -6C" sin(20)

where,

2, 24 o cH

(H) =1 - —= =
hie (tH? (H) 2

From the geometry, given in Figure (2), the film thickness
is given by,

H=R,-R-c¢cos () (35)

which can be written as

H=C(1-7 cos (6) (36)
where
- - - €
’ C‘Ro R ’ Y Ro"R
and
H = C(1 - ycos(6)) _@3n

Integration of equation (34) twice with respect to 6
yields,

®__g e A _ (38)
48 (1-ycos(8))’(v,H) (1 -ycos(8))’sinbep(t,H)

and

l.’=—6f sin6d6 'Af de ’3(39)

(1-veos(@)’@(vH) (1 -ycos(8))'sinbe(r,H)
where, (A) and (B) are integration constants. Two cases
arise; A sphere in a complete hemispherical seat, Figure
(2-a), and a sphere in a partial hemispherical seat open at
each end, Figure (2-b).

b- Partial hemispherical seat
Figure 2. Spherical bearing configuration.
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2.2.1 Sphere in a complete hemispherical seat
In the case of a sphere in a complete hemispherical seat,

Figure (2-a), the appropriate boundary conditions of the
pressure are,

=0 hen 6=0
de ¥ } (40)
P =0 when 0 =xn/2
by using equation (38) and (39) with the boundary
conditions (40), the pressure distribution is,

sin@®do
(1 - ycos(6))’¢(t,H)

- 'ﬂ

P©) =6/

[

The load capacity is given by,

=2
F = 2xR? f Psin(0)cos(0)do (42)
0

or in dimensionless form becomes

=2

3 -
e ke [ Psin(e)cos(@)dd  (43)
0

pR4vV

F -

which on using equation (41) gives,

- - sin’(6)do

= (44)
o (1 - ycos(8)’@(t,H)

To obtain the expression for the time of approach let,

v -
F=MF (45)
CJ
since,
dH
Vv 0) = o0
cos(6) m
dH dy
BT ;. 9)—L
at M-
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Thus,
Vis Cﬂ (46)
dt

Substituting equations (46) and (44) into equation (45),
the nondimensional time of approach is,

Y12 |
AT=C—3};At=6nff si(0)d0 (4,
uR 7o 0 (1-ycos(8))’e(t,H)

For small values of n (or for large 1), equation (34) shows
that,

p(tH) =1
consequently, equations (41), (44) and (47) correspond to

the classical case of squeeze film configuration with
Newtonian fluid [10]. That is,

P(®) = 3{ 1 41 } (48)
(1 - y cos(6))?

Y
- 1 1 1
, Fabn{——mie st (] -y}l 49)
Tt{Yz(l-vr) Y I 27}

¥ {1 y2+1 }
and AT=-3xn{— +( )YIn(1 -vy) (50)
4

2
Y Yo

In this case, when the center of the sphere and
hemispherical seat coincide (y = 0) the values of the
expressions in the square brackets in equation (49) and
(50) becomes (2/3) and (- 1/2) respectively.

2.2.2. A Sphere in a partial hemispherical seat open at
each end.

In the case of a sphere in a partial hemispherical seat
open at each end, Figure (2-b), the appropriate boundary
conditions of the pressure are,

when 6 =6

¢ (1)
0 when 6 = x/2

i ol

By using equation (38) and (39) with the boundary
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conditions (51), the pressure distribution is,

50 = 6 f sin(6)d6
(1 - y cos(®)’e(t,H)
- (52)
-A [ R -
(1 - y cos(8))’sin(6)¢(t,H)
where,
=/2 .
f sin(6)doe
1- So(z,H
A6 ycos(0)) ¢(t,H)

!

The angle of separation (4) at which maximum pressure
occurs may be obtained from equation (38), where
dP ,

— =0 até = '1, as

de

a - Ym(e))’nn(ﬂ)to(t.ﬂ)

’f sin(6)d®
s, (1 - ycos(8))’8(<,H)

f de )
8, (1 - ycos(8))’sin(®)¢(v.H

sin’(y) = (53)

The dimensionless load capacity is,

FC3
pR4V

F =

=/2
= 6n f Psin(0)cos(0)d0  (54)
el

which on using equation (52) gives,

F=6nfl -L.L] (55)

where, o

e sin’(0)d0

u- ]

5, (1 - ycos(8))’e(t,H)

e ’}2 sin(@)d0
3 (1 - yoos(8))(xH
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, L = 6m 7 . 40 =
o, sin@ (1 - ycos(8)) ¢(t.H)
1 A A R
,Is = I, - Iy sin® (6)
and
5t

Substituting equations (46) and (55) into equation (45),
the nondimensional time of approach is,

Y
AT=6nf[I‘—I,-IIf]dy (56)
Yo

where,
7; is the final eccentricity ratio.
Yo is the initial eccentricity ratio.

If (6, = 0) equations (52), (55) and (56) reduce to
equations (41), (44) and (47), respectively, of sphere in a
complete hemispherical seat.

Equations (52), (55) and (56) correspond to the classical
case of squeeze film configuration with Newtonian fluid
[10] when 7 tends to infinity. That is,

=2
P«»-—{ = } A f(1+37’)1n|tan(%)l

2y |(1-y.cos0)?f, (1-y°|
dbs 40
¥+ yd)in|sin(b) | + y2cos(b)(3 - Y%"(‘”)}
by
F =6xfl, - L . 1] (58)
where
‘P(T ’ ﬁ) =1
and
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: 1 sinz(ei) 2cos(8,) the smaller 7 is, the more pronounced are the effe;ls dlue

™ = + to couple stresses. Moreover, the linear theory ol ar
1 2 i p ; ry po

2y - Ycos(ei)) v Ycos(ei)) fluids should be more accurate than linear viscous fluid

% _2_1n(1 - ycos(8)) - 1) theory. For large values of 1 either the characteristic

y? ' material length (17/;1)1/2 is small or the geometric length

_ 1 ( 1 1) is large, couple stresses are not likely to be significant
& Y (- .(cos(ei))Z which in turn implies that the bearing characteristics

and reduce to their equivalents in Newtonian theory.
-1

Ay

+ v2 cos(®)(3 - yoozs(b)) -y @ + y)n | sin®t 3.2.1 Conical Bearing

{(1 + 3y)In | m(%) | 3.2 Bearing Characteristics

Dimensionless pressure distribution, load carrying
capacity and time of approach are shown in graphical

where, form in Figures (3-9) for a wide range of the couple stress
- cos(® parameter T and two values of semi-vertical cone angle a
b, = cos™! Y_____')_. when 0 =6 (E = 05, 1.0). These curves are drawn for full and
1 - ycos(6) ' truncated conical seats (li'1 = 0.0, 0.25). As T — ©, we
, b, = cosI(y) when 0 =n2 arrive at the classical Newtonian fluid theory.
3. RESULTS AND DISCUSSION Fx100
20
3.1 Couple stress parameter
18
The couple stress fluid is characterized by the two
material constants g and 7, the dimensions of y are those 16
of viscosity whereas the dimensions of n are those of
momentum . The ratio (n/p) has dimensions of length 14
squared. The non-dimensional parameter 7 defined by 7 =
R (u/n)l/ 2 where R is a typical dimension of the flow 19
geometry, characterizes the couple stress property of the
fluid and also distinguishes it from the newtonian fluid. If 10
(n/u)l/ 2 is a function of molecular dimensions and can be
identified with a property which depends on the size of 8
molecule, such as the chain length of the molecule of a
polar additive in a non-polar lubricant, it will vary for 6
different liquids. Such a "size dependent effect"does not
exist in non-polar fluids. Therefore the parameter 7 4
provides a mechanism which might be helpful in
explaining some of the rheological abnormalities that are 2
commonly observed in certain fluids containing additives
when the flows are confined to narrow gaps. 0.0 .
When 1t is small, which implies that either the 0.0 02 04 06 08 1.0RR,

characteristic material length (n /u)l/ 2 is large or the
geometric length is small, couple stresses which arise as a
consequence of the intrinsic motion of the lubricant or
additive molecule are likely to be more significant. Thus

Figure 3. Dimensionless pressure distribution for
various values of couple stress parameter (1), full
conical seat.
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Px100 T =10) — ke T =10
Tr 14t ; 210" —— —
6t il =

By R, =0.25
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10F
“r 8 |
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1t
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Figure 4. Dimensionless pressure distribution for

various values of couple stress parameter (T),

truncated conical seat.

o

Figure 6. Dimensionless pressure distribution for

various values of couple stress parameter (), plane

annular discs.

y L
10}
10}

20 I
10
0t

10 10}
10}
rol—

PTG bl

Figure 5. Dimensionless pressure distribution for
various values of couple stress parameter (7), plane

dises.
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6 0 T

0 v

Figure 7. Dimensionless load versus couple stress

parameter (7) for full and truncated conical seat at
different values of cone angle.
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Figures (3) - (6) show the dimensionless pressure
distribution. It is clear from these figures that the pressure
level for a fluid with couple stresses (small values of 1) is
higher than that for a Newtonian fluid (1 = ). Moreover,
the pressure built-up for full conical seat (R 1 = 00)is
higher than that of truncated one (Ii'1 = 0.25). Also, for
small value of semi-vertical cone angle, E = 0.5, the
pressure is substantially higher than that of E = 1.0.

The variation of dimensionless load carrying capacity
with E and 7 is shown in Figure (7). It can be seen that
the load carrying capacity is significantly higher for couple
stress fluid lubricant. As the semi-vertical cone angle a
increases the load carrying capacity decreases.
Furthermore, the full conical seat is capable of supporting
loads higher than that supported by truncated seat.

Figures (8) and (9) give the film thickness-time relation
for different values of 1. The squeeze film time for couple
stress fluid is considerably longer than that of the
Newtonian fluid. As expected, during the squeeze action
a cone on a truncated conical seat sinks more quickly
through the film than an equivalent one on a full conical
seat. Further, a large value of semi-vertical cone angle a
results in much less time needed for reducing the film
thickness a certain value from a specific position.

ok
b Hx10 3
¢ T =10,

e o QR

12+ R1 =0.0

oo 1 1 i
i 10 i 10 10 10 T

Figure 8. Dimensionless time versus film thickness
for various values of couple stress parameter (1),
full conical scat.

- =k 3
y H°x10 T =100 —
=@ oo
12 ﬁi 2025

10 ¢+

Qo0 . . ) e

S 7 3
0 10 1 10 10 10 T

Figure 9. Dimensionless time versus film
thickness for various values of couple stress
parameter (1), truncated conical scat.

100
80
60
L0

20

0.0

Figure 10. Dimensionless pressure distribution
for various values of couple stress parameter
(1), complete hemispherical seat.
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50
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g ©E T ABSUR SRR
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Figure 11. Dimensionless pressure distribution for various
values of couple stress parameter (1), partial hemispherical
seat.

3.2.2 Spherical Bearings

Dimensionless pressure distribution curves are shown in
Figure (10) for complete hemispherical seat (6, = 0) and
Figure (11) for partial hemispherical seat (6, = n/8).
These curves are drawn for different values of couple
stress parameter (T = 103, 10%, ©0) and fixed eccentricity
ratio (y = 03, C = 0.001). As T — ©°, we arrive at the
classical Newtonian fluid theory. In all cases the pressure
level for a fluid with couple stresses (small values of 7) is
higher than that for a newtonian fluid (1 = ). Further,
the pressure built-up for complete hemispherical seat (6,
= 0) is higher than that of partial hemispherical seat (6,
= m/8). Inspection of Figure (12) shows that A decreases
with decreasing of 7, i.e., the location where Fmax exsists
shifts closer to the inner edge of the partial hemispherical
seat. Also inspection of the same Figure shows that at the
same value of 7, A decreases with increasing of p.
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0
A Yy =0.3—
L8
=1
50 d
——/
G TN R — o
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20
10
0.0

10 10 1 ® 1 10 <

Figure 12. Variation of the angle of separation with
the couple stress parameter (1) for different values
of the eccentriaty ratio ().

0w o 0 1 10 10 <

Figure 13. Dimensionless load versus couple stress
parameter (1), for complete and partial
hemispherical seat.

Figure (13) shows the dimensionless load capacity versus
couple stress parameter 7 at fixed value of eccentricity
ratio (y = 0.3), for complete (6, = 0) and partial (f, =
n;/3) hemispherical seats. It is clear from the figure that
the couple stress parameter 7 has an adverse effect on the

load capacity. It is also evident that the complete
hemispherical seat is capable of supporting loads higher

A 389



BEDEWTI: Analysis of Couple Stress Fluid Squeeze Films

than that supported by partial seat. This is so because the
presence of the inner edge opens an alternate channel for
fluid flow.

Figure (14) and Figure (15), for complete (6, = 0) and
partial (6, = n/8) hemispherical seat respectively, give the
eccentricity ratio - time relation for various values of
couple stress parameter (7 = 10° , 10°, 00). The squeeze
film time for couple stress fluid is considerably longer than
that of the newtonian fluid. Moreover, as expected, during
the squeeze flow action a sphere on a partial
hemispherical seat sinks more quickly through the film
than an equivalent one on a complete hemispherical seat

$ ¥
1.2 T =10’ ——
=40 e
1.0} = o=
8, =0.0
8t /
0 /
/
0.6F l;
/!
of
0.4}
Fd
s P o
0.2 >
00 1 1 1’ I
10 1 10 10° 10 T

Figure 14. Eccentricity ratio versus dimensionless time for
different values of couple stress parameter (1), complete
hemispherical seat.

4. CONCLUSIONS

Analysis of couple stress fluid squeeze films in conical
and spherical bearings lead to the following conclusions:
1 - The load capacity of couple stress fluid is significantly
higher than that of Newtonian fluid.

2 - The load capacity is decreased as the couple stress
parameter is increased.

3 - Squeeze action in fluids with couple stress is slower
than in Newtonian fluids.

4 - The time of approach is decreased as the couple

A 390

stress parameter is increased.

b Y
12f T —
2ot ——~
i e
1.0F Gi :nls
08F
0.6F
0.4F
02k
0.0 L . . -
16’ 1 10 100 10 v

Figure 15. Eccentricity ratio versus dimensionless
time for different values of couple stress parameter
(1), complete hemispherical seat.

NOMENCLATURE

C radial clearance, givea by C = R, - R

¢ eccentricity

E sin (@)

F load capacity

F force vector per unit mass

F dimensionless load capacity

H oil film thickness

H, distance between vertices of the cones

H,; initial film thickness

H dimensionless oil film thickness

k  n/uRs® ( conical bearings ) n/uR’ ( spherical
bearings)

B pressure

P dimensionless pressure

r,0,z cylindrical coordinates system

r,0,¢ spherical coordinates system

R r sin (a), horizontal coordinate in the case of
conical bearings
radius of sphere in the case of spherical bearings

Ry,  radius of hemispherical scat

R,  radius of the base of truncated side of cone

R,  radius of the base of the cone

R dimensionless horizontal coordinate in the case of

Alexandria Engineering Journal, Vol. 31, No. 2, April 1992
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conical bearings
time of approach

T dimensionless time approach

T body couple vector per unit mass

wv,w velocity component in the (r,6,2)
or (6,¢,r) directions respectively

\' normal squeeze velocity

V  fluid velocity vector

a semi-vertical angle of cone

7,  initial eccentricity ratio

y;  final eccentricity ratio

e a/m’

8, inner exit angle of partial hemispherical seat

N outer exit angle of partial hemispherical seat

A angle of separation for partial hemispherical
seat

1 1/(k)1/ 2, couple stress parameter

p density

{,u,n material constants
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