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ABSTRACT

This paper describes a methodology designed to support the decision- making process by developing seaport
infrastructure to meet future demand. Seaport planner should be able to avoid inadvertent over- building and
under-building. Within this methodology, the movements of ships in a port can firstly be analyzed. Ships arrivals
in the port and service times at berths are approximated by theoretical models. Then, the interrelationship
between number of berths, number of waiting ships, and ships delays is determined using queuing theory.
Finally, the optimum number of berths that minimizes the total port costs can be decided, taking into
consideration the time costs of both idle ships and idle berths. An application of the proposed methodology to

Alexandria Port is also presented in the paper.

INTRODUCTION

The port transportation system includes different physical
elements; e.g. berths, handling equipments, storage and
traffic facilities. Although the capacity of any single
element may be expressed as an absolute figure, such as
the number of containers loaded per hour by a certain
crane, the aggregate capacity of the whole port can not be
so simply described. Each element can limit the overall
port productivity.

Port productivity can be viewed from two standpoints.
To ship operators, productivity implies the time needed
at the port to serve ships, while at national level, port
productivity can be defined as the amount of cargo
transported through the port during a certain time period.

Port development is often affected by operating policies
as well as by the traffic demand imposed in the port in
terms of the volume of cargo expected to be
accommodated, the service time at the available berths
within which this volume should be handled, and the
frequency of ships arrivals.

It would be possible to develop the port facilities so that
its capacity is fully utilized at all times. In this manner,
changes in demand have to be accommodated by forcing
ships to wait (at anchorage) until ships that arrived
previously had been serviced. This policy would be
inefficient and uneconomic due to the delay costs of
waiting ships. Conversely, developing the port so that ships
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are never forced to wait also represents an uneconomic

use of port resources.

The ideal situation is the one in which all berths are
occupied all time and no ship is ever kept waiting. This
situation is impossible to achieve in practice because of
the random arrivals of cargo ships and the variations in
service time of ships of different sizes.

Therefore, decisions concerning port development can be
made by trading- off the cost of increasing the port
capacity and the costs of both waiting and service times.

The purpose of this paper is to introduce a methodology
which can be used to facilitate the decision-making process
of port development. The proposed methodology covers
two principal areas:

(a) Investigation of the pattern of ship -traffic at a
seaport from the standpoint of queuing theory, and
to use the findings to draw some hypotheses
regarding its application to the overall operation in
seaports.

(b) Determination of the optimum number of berths
needed in a seaport that will minimize the total port
usage costs.

The proposed methodology is then applied to the group

of berths at Alexandria Port which deals mainly with
general cargo vessels.
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ANALYSIS OF SHIPS MOVEMENT IN PORT

An important parameter measuring the performance of
a seaport is the delays that ships experience while waiting

to be processed. Two factors affect these delays: (a) the
pattern of ships arrival, and (b) the berth time
requirement for cargo handling.

The arrival of a cargo ship in a port is often irregular
[12], and when it arrives, it may be able to move directly
onto a berth or has to wait until a berth becomes empty;
if all berths are occupied. The berth time needed to serve
a ship is also variable, as it depends on the amount of
cargo which the ship carries and the capacity of the
present facilities for handling and storing cargo [2].
Figure 1 shows ship behaviour in a seaport.
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Figure 1. Seaport operation

The investigation of such random occurrences requires
a complex and detailed analysis. The concept of "Queuing
Theory - waiting line problem" can successfully be applied.
Queuing theory is one of the most useful tools for
analyzing the behaviour of waiting units (ships in this
case), or for investigating the components of a multiple
operation system [7]. Thus, queuing theory may be
adequate for studying the ships’ movement in seaports.

Two basic elements are necessary for the application of
queuing theory to a waiting line problem: an arrival
function and a service function. These functions should
firstly be modeled. Once the validity of these models is
tested, the different characteristics of the theoretical
models, which describe the actual system with the accuracy
that may be realized in estimating future traffic, can then
be determined.

To analyze the movement of ships in a seaport using the
queuing theory, the following conditions are assumed:

- Ships arrivals and service times conform to the pattern
of random occurrences.
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- Ships are processed on the "first-come first-served’
queue discipline.

- The queue length is unlimited, i.e. if a ship arrives and
finds a long queue, it joins the waiting ships and does
not leave the port.

Ship Amival Function

Probably the two most commonly encountered arrival
pattern of ships in a seaport are the random arrivals, and
the scheduled arrivals with considerable delays. Thus, to
predict the number of ships present in a port in a certain |
time period (usually a day), the arrival pattern of ships
may be approximated by a Poisson function [1,10,14]. In
this way, the probability P of the arrival of n ships in the
port in a given time can be expressed as (Figure 2)

P, = (k).
where

A the average arrival rate of ships in a given time

(one day; for example),
the Naperian logarithmic base, and
= the factorial of the number n
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Figure 2. Ship arrival distribution as Poisson
function, hypothetical port

The distribution of ships arrivals with Poisson function
can be calculated, only if the average arrival rate during
an entire period is known. The expected frequency F of

Alexandria Engineering Journal, Vol. 31, No. 1, January 1992




HASSAN: Optimum Number of Berths at Seaports

n ships in port in a given time T is

in which T = the time period port operation considered
(often expressed on an annual basis as 365 days).

The Poisson distribution can also be used to focus on
the time intervals "t" (i.e. the headways between successive
arrivals) rather than on the number of arrivals occurring
during a stated time [6]. In this case, the probability
function of the arrival times will be

f@y=4.e™

This equation, known as the negative exponential
distribution, is expressed as a cumulative distribution
function. It describes the probability of a headway "h"
being greater than or equal "t":

Ph2ot =[ f@®=e"

Service Time Function

The duration of ships at a berth for handling cargo may
be described as an Erlangian function [5,8,9], which is
usually used to present service times which are more
regularly spaced in time than those represented by the
Poisson distribution.

There are purely theoretical curves (Erlang-functions),
each of which is based on the assumption that the service
time is split into two or more operating phases following
one another, and that the ship does not leave the berth
until all phases are completed. "k" is the number of
"Erlangian Phases" of ships service time distribution at a
berth. Each function has a negative exponential
distribution. As "k" increases, the total service times
become more uniform, until finally with k = o0 all service
times are identical. In the general case the total service
time probability P is given by (Figure 3)

k-1
_ o-kb. ¥ (kb).n/n!
Py e =0
where
b = Average berth service time (in days)
k = Erlangian number (k = 1, 2, 3,....., )
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Figure 3. Service time distribution as Erlangian
function, hypothetical port

Through the choice of k, a service time function may be
described as anything from the purely random exponential
type (k=1) to the completely regular constant service time
type (k=20). The value of k should be selected and tested
to provide the best fit to the observed data.

Queuing Phenomenon

Based on the queuing theory, useful results pertaining to
the amount of delays to be expected and the length of
queues (here; number of ships waiting for berth) may be
calculated with an appropriate model [3]. However, as the
nature of the problem is defined, in this paper, as multi-
channels (berths), with exponential arrivals (Poisson), and
multiple exponential service (Erlang), no feasible
mathematical solution is possible. The theoretical models
available in the literature for multi-channel systems, are
intractable for other than exponential distribution of
arrivals and multiple exponential service time distribution.
For investigating queuing situations of multi-channel
systems, models are accessible only for the following two
cases:
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Case I: Exponential distributions for both arrivals and
service times

Case II: Exponential arrivals and a constant service time
k=D

Some approximate formulas have recently been proposed
that relate the average delays in the case of exponential
arrivals and multi-exponential service (study case) to that
of the model of case II (described later). One of the
models is suggested in [11]:

w, = wp (1 + v?)/2

in which, w, = average waiting time of ships in case of
exponential arrivals and Erlangian service (in days), w; =
average waiting time in case II, v = correction coefficient
of ships’ service time distribution. If the service time of
ships obeys Erlang with k phases, then
v=1/k
Regarding the queuing model of case II, the essential
parameters are derived as follows:
A = Average arrival rate in ships/day
(Poisson-distribution)
i = Average service rate in ships/day
(Erlang-distribution; k = ©9)
= 1 / average berth service time
=1/b
S = Number of berths

The ratio of the arrival rate to the service rate is usually
known as the traffic intensity, and denoted by o, thus

o=4/p
In this case, it can be noted that the average waiting
time before service w; is given by

S-1

w; = 0°((Z (0"/n!) +0%)/(S-1)!(S-0))" /(1(S-1)!(S-0)%)

n=1

From the above analysis of delays in the queue,
computation can readily be made of the average length of
queue, i.e. average number of ships waiting for a berth n,,.
The appropriate expression is
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n, = 4.w

Thus, the average number of ships ng present in port
with S berths in a certain time period can be calculated
using the following formula:

Mg =ily'F By
where,
n, = average number of ships served at berths
S x berth utilization factor
Sx(A/pS)=o0

Thus, it is seen that the traffic intensity o defined in the
queuing theory equals the average number of ships served
at berths n.

ANALYSIS OF PORT CAPACITY
Minimum Capacity

The minimum number of berths S_ .  which has to be
constructed in a seaport to handle a certain amount of
cargo can be calculated using the following procedure:

Let Q = the total amount of cargo (in tons) handled in a
port section in a time period T (for example; T = one
year = 8760 hours), and R = average rate of cargo
transfer between ship and berth (in tons per hour).

then, S,;, = Q / (R.T)

Thus, the gross berth time available is "S_; . T". Now, let

p equal the percentage of berth usage throughout the
period T (berth utilization).

B = berth time required / berth time available, or
= Q / (Spin-RT)

In this manner, the calculated number of berths is based
on average values, regardless the random arrivals of ships
and the variation in berth service times.

Optimum Capacity

If the number of berths in a port is S, the total cost
spent in the port during a certain period C equals the sun
of two deferent types of costs: cost related to berths and
the cost related to ships present [13]. Thus, it can be
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expressed as (Figure 4)

C=¢,TS + cg.Tng

in which, C = the total cost of a port with S berths during
the period T, usually one year = 365 days, (in L.E.), ¢, =
average cost of a berth; i.e. construction and maintenance
costs (L.E./day/berth), cg = average delay cost of a
waiting ship (L.E./day/ship), and ng = average number of
ships present in port.

total port

berth costs

-~
S e G

number of berths

Figure 4. Total usage cost at a hypothetical port

Accordingly, if the amount of cargo that must be dealt
with at a port during the period T is given as a planning
target, then such number of berths S becomes the
optimum that minimizes the total cost C. Therefore, C is
a proper measure to examine the optimality of a port
system.

Now, both sides of the above equation are divided by
"Cg.T" in order to decrease the number of the parameters
involved. Thus,

rg = C / (cg.T) = (cp/cg)-S + ng = (rpg:S) + ng

in which, rg = ratio of the total annual cost for port to
annual ship cost, and ryg = berth-ship cost ratio.

Assuming that S is optimum, then the following
optimization condition must be held:

Ig < fgyp, and g < g,

Thus, rg will be adopted hereafter as a measure to
determine the optimum number of berths.

From the preceding information the procedure can be
standardized as follows when given the data Q, R, ¢, cg,
A u, ke
Step 1. Calculate the minimum number of berths from

the equation S, = Q / (R.T)

Step 2. Determine the value of traffic intensity o
(0=4/mw

Step 3. Compute the value of berth-ship cost ratio ryg
from the given data ¢, and cg

Step 4. For each number of berths, with S greater than
the minimum value, estimate the number of ships
present in port ng, and predict the ratio rg

Step 5. The number of berths which satisfies the
optimization condition (rg < rg,, and rg < rg )
is optimum

Step 6. Compute the average berth utilization f
B=0/9)

Step 7. Summarize the queuing results (average number
of ships present in the port, average number of
ships at berths, average number of waiting ships,
average waiting time)

In order to illustrate the sequence of the calculations
within this procedure, a very simple example is carried
out. The aim is to determine the optimum number of
berths at a hypothetical port. The following values are
given as input data: Q = 1 Mill. tons, R =1200 tons per
day, ¢, = L.E. 2000 per day, cg = L.E. 8000 per day,
A = 3.19 ships per day, p = 1.18 ships per day, and k
= 2.

1. S_. = 1000000/ (1200 x 365) = 2.28

min
= 3 berths
2 g =319 /118 = 2.7
3. ryg = 2000 / 8000 = 0.25

4, Figure 5 shows the relationship between traffic
intensity and rg for a proper number of berths
S > Smin)

5. The optimum port capacity is 5 berths. In this instance,
rg = 4.09, and the annual port costs C = L.E. 11.943
Millions

6. The average berth utilization = 2.7 / 5 = 0.54
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7. Queuing results:
average number of ships present in port ng = 2.84
average number of ships served at berths ny, = 2.7
average number of waiting ships n,, = 0.14
average waiting time per ship w, 1.05 hours
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Cost Ratio
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N

2.70
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0] 1 2 2 4
Traffic Intensity

Figure 5. Determination of the optimum number of
berths, illustrative example

Figure 5 also shows that a five-berths set is the optimum
port capacity, in case of traffic intensity values varying
between 2.50 and 3.30.

APPLICATION : ALEXANDRIA PORT

The foregoing methodology is applied to investigate the
movements of ships in Alexandria Port and to predict the
future capacity. The application is restricted to general
cargo ships, excluding Full- container and RO/RO ships
which have particular berths at the port.

Alexandria Port is the major port in Egypt. About 20.5
Million tons passed through the port in the year
1989/1990; i.e. 60 % of the total volume of the foreign
trade. The amount of general cargo handled in the port in
that year was 4.326 Million tons.

Alexandria Port is constituted of an old and complicated
layout with short quays and too narrow or too long piers.
A large number of quays has a limited drought under 8.0
meters, and only a lower number of berths is capable to
receive ships with more than 130.00 meter length. The
number of berths available for general cargo in the port
is 32 berths.
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Data Base

The daily "log books" of the traffic department of the
Alexandria Port Authority include (among others) the
arrival time of each ship at the pilot vessel. In addition,
detail information concerning the movement of each ship
in the port is also available in the so-called "ship log
sheets". Every sheet is a ship report, and it contains the
following data:

- Ship name, nationality, type of cargo, and total tonnage.

- Berth occupancy, including berth changes during the
period in port.

- Date and time of arrival, berthing, and quitting the port.

Ships Amivals

If the distribution of ships arrivals can be predicted
reliably, port planner can proceed with great confidence in
making development plans that may avoid over-building or
under-building the port facilities.

The actual pattern of ship arrivals at the port of
Alexandria is compared with the theoretical function
prognosticated mathematically by Poisson distribution of
random occurrences. The application includes a specific
analysis of the number of ships present, day by day, over
a period of one year (from July 1, 1989 to June 30, 1990).

The number of ships present in the port, each day, was
transcribed from the port "log books" and then
summarized to obtain the number of days, that various
number of ships were present during the period studied.
The theoretical distribution (Poisson) is computed. Table
1 compares the predicted distribution with the actual one.
The average arrival rate was 5.69 ships per day.

In Table 1, it can be seen the good agreement between
actual and predicted distributions. The number of days
that various numbers of ships are predicted to be present
in the port is in agreement with the actual distribution on
336 days of 360 days, i.c. on 92 % of days.

To judge whether the observed frequencies of ship
arrival distribution is compatible with the predicted
theoretical frequencies, Chi-square is computed, and the |
result, X2 = 20.0 with 10 % probability, indicates a good
fit. From the statistical standpoint, probability values
between S % and 95 % designate good fit from which it
is concluded that this theoretical distribution is plausible
[6]. Figure 6 demonstrates the goodness of fit between
actual and predicted distributions.
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Table 1. Comparison of actual versus predicted ship
arrival distribution

Arrival Actual Predicted Predicted days
rate number of number of agreed with actual
ships/day days (A) days (B) (Min.: A or B)
0 1 1 1

1 6 7 6

2 18 20 18

3 27 37 27

4 49 54 49

5 73 62 62

6 60 59 59

7 61 47 47

8 37 34 K2

9 15 21 15

10 9 12 9

11 5 6 5

12 2 3 2

13 2 2 2
Total 365 365 336

Frequency (in %)

n
(=]
—_—

: i i @ B
4 5 6 8 9 10 11t i2 »12
Number of ships

HHH observed Values === Theor. Distribution

Figure 6. Frequency distribution of ships arrivals,
Alexandria Port 1989/1990

Berth Service Times

. Information giving the date and time of arrival at a berth
and the date and time of departure from the berth were
obtained from the "ship log sheets’. A total of 315
observations, including those general cargo ships which
were tied up at the berths between July 1, 1989 and june
30, 1990 were randomly selected to be analyzed. A class
interval of 15 hours was selected for such analysis.
Search for a suitable model for the distribution of the
durations at berths led to an Erlangian distribution having
k = 3. The mean time spend at a berth was found 5.58

days for the 315 observations. The standard deviation of

the distribution was computed and found to be * 1.43
days. Figure 7 presents the frequency and the cumulative
distributions of the observed data and compares the values
of the cumulative distribution with those of the Erlangian
function having k = 3. A Chi-square test was also
performed to test the goodness of fit between the
observed frequency distribution and the postulated
Erlangian function, and a value X% = 14.87 for 42 %
probability was found. Comparison with other Erlangian
functions (k = 1, k = 2, and k = 4) indicates that k = 3
is the best choice for this distribution function. Figure 7
shows the observed data points and a plot of the selected
function.

Cumulative Frequency (in %) Frequency (in Numbers)

100'

] 100
80 - 1 80
60 + 160
40 - 440

20 420

o Ll U . . s L bk I .
0 30 60 90 120 150 180 210 240 270 300
Berth Service Time (in Hours)

*" Observed (No.) O Observed (cum.) === Erlang (cum.)

Figure 7. Frequency distribution of berth service
time, Alexandria Port 1989/1990

Optimum Number of Berths

To establish the optimum nuwmber of berths needed for
general cargo handling at Alexandria Port in the year
2005, applying the proposed procedure, the following input
data are used:

- Due to the further development of the egyptian ports,
particularly the Dekheila Port, the annual general cargo
tonnage to be handled at the berths of Alexandria Port
will be only about 4.00 Million tons at the target year
(tonnage in year 1989/1990 = 4.326 Million tons)[4].

- The average arrival rate k of general cargo ships will be
5.26 ships/day, assuming that the average ship load
equals 2084 tons (the present value).

- The average rate of cargo handling at a general cargo
berth R = 373.5 tons per day (the existing rate).

Alexandria Engineering Journal, Vol. 31, No. 1, January 1992 C 339

i

|




HASSAN: Optimum Number of Berths at Seaports

- The average cost of a berth C, = L.E. 2000 per day
(approximately $ 600 per day), based on the
development program of the Alexandria Port [4].

The average delay cost of a general cargo ship
Cg = $ 6000 per day

The calculations are carried out as follows:
1S = 4 000 000 / (373.5 x 365) = 29.34

min
= 30 berths
2. u =1/ 5.58 = 0.18 ships/day
o =526 /018 = 29.35
3. ,g = 600 /6000 = 0.10

4, Figure 8 shows the relationships between traffic
intensity and the cost ratio rg for a proper number of
berths (from S= 29 to S = 34)

5. The optimum port capacity is 33 berths. In this
instance, rg = 3434, and the total port costs
C = $ 75.200 Millions (the development of 33 berths
plus the annual maintenance costs)

6. The average berth utilization = 29.35 / 33 = 0.89

7. Queuing results:

average number of ships present in port ng = 31.04
average number of ships served at berths ny = 29.35
average number of waiting ships n, = 1.69

average waiting time per ship w, = 0.32 days

The relationships in Figure 8 are prepared as design
curves derived to determine the optimum number of
berths for Alexandria Port by changing the traffic intensity
and/or the cost ratio ryg. The optimum number of berths
corresponding to a suitable cost ratio ryg values (from 0.10
to 0.30) is noted in this figure. It can also be seen that a
33-berths set is the optimum port capacity in case of
traffic intensity values varying between 27.58 and 29.60.

Table 2 shows the calculation of the costs of idle berths
and idle ships for 33 berths in view of the expected
frequency (number of days per year). It also presents the
combined costs (vacant berths and ships) in case of port
size 32, 33 and 34 berths. The cost comparison indicates
that the total port cost is least when there are 33 berths.
This conclusion confirms the result previously obtained by
applying the proposed methodology.

CONCLUSIONS
The paper presents a methodology proposed to predict

the optimum number of berths required in a seaport to
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Figure 8. Determination of optimum number of
berths, Alexandria Port 2005

meet the future traffic volumes. The methodology is based
on the hypothesis that the number of berths can be
increased as long as the marginal cost of berths
(construction and maintenance) is less than the delay costs
of waiting ships.

The queuing theory has been employed to derive the
number of waiting ships and the average ship delays. The
usage of queuing theory is subjected to the following two
assumption:

- ships arrivals at a seaport can be described as a negative
exponential distribution, and
- berth service time yields to a multi-exponential function.

The employment of the queuing theory to study the
movements of general cargo ships at Alexandria port was
profitable. The observed pattern of ships arrivals appears
to agree with Poisson’s law of random distribution. In
addition, the berth service times for 315 ships were found
to conform most closely to an Erlangian distribution with
k = 3. The usage of an approximate model of queuing
theory led to acceptable results. The criterion for
acceptance of this model was the reasonable agreement
achieved between the computed and observed values of
average waiting time and average number of waiting ships
in queues at berths.

Thus, there are no doubt that ships arrive at Alexandria
port in accordance with a random pattern and that the
future distribution of such arrivals can be predicted to a
degree of accuracy that compares favorably with the
accuracy that may be realized in estimating future traffic.
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Table 2. Cost calculation of both idle ships and idle berths in case of 33 berths, and the comparison of the resulting
value with those for 32 and 34 berths

Arrival rate Predicted Berth Required number Over-building Under-building
frequency utilization of berths Number of Berths-Days Number of Ships-Days
(ships/day) (in days) berths ships
A F B <10 o (33-0) F x (33-0) A=xt F x (3-X)
0 2 0.00 0 3 66
1 10 0.17 6 27 270
2 26 0.34 12 21 546
3 45 0.51 17 16 864
4 60 0.68 23 10 600
5 64 0.85 28 5 320
6 56 1.00 33 0 0 0 0
7 42 1 42
8 28 2 56
9 16 3 48
10 9 4 36
1 4 s 20
12 2 6 12
13 1 7 g
Total 365 2666 215
Costs in Million dollars (using ¢, = $ 600, cs = $ 6000) 1.60 1.29
Total costs for 33 berths in Million dollars 2.89
Total costs for 32 berths in Million dollars 3.66
Total costs for 34 berths in Million dollars 2.96
* X = No. of available berths x maximum berth utilization / average service time
=33x1/558 = 60
The application to Alexandria Port  verifies the BCEOM, Algxandria, 1988
anticipated benefit of using the suggested methodology to [5]  Platz, H, "Okonomische Bewertung von Hafen-
evaluate the port size in the best interests of both ship investitionen -Economic evaluation of port
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the total port cost is minimum, ie. the cost of vacant [6]  Potthoff, G., "Verkehrsstroemungslehre - Theory of
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waiting for a berth during the same period. (7]  Newell, G. “Application of queuing theory",
Chapman & Hall, London, 1982
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