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This work presents a generalized Markovian model for a system of n unidentical-repairable components.
Transition probabilities matrix and the set of 2" differential equations are fully described. The case of identical
nonrepairable components are treated as special cases. Deviation from constant failure model is discussed
through a suggested procedure to be followed in such cases. Sample of results are presented for testing the

consistency of the model.

1. INTRODUCTION AND BASIC ASSUMPTIONS

Reliability concepts for different configurations of
components can be better understood through the
continuous Markov process [1]. The process structure
discusses all possible transitions between system states
allowing repair or not.

The number of states for n components configuration is
n

gven by 2" = E (n) where m is the number of
m

m=0

compopents failed in any state, and (n)is the
m

!
combinational formula ——
(n-m)!m!

The following notations and definitions are usually

utilized [2]:
& Bs {1} probability that a system in state i at time t

well be at state j at time t + 8(7.
¢+ System states: Sj ,j =0,12,..2°1,

* x component success state, x : component failure state.
¢ S =[x %o Xy g Xp}
4
S = [X) Xpe X X}

Sy =[xy By o Xpp Xy}
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Szn_z & {xl x_—z‘..x—:_l &}

S,"1 = {%1%2-Xg 1%}

Following the construction of transition matrix, a set of
linear differential equations can be whose solutions are the
system state probabilities as function of time. These
probabilities are utili-zed to derive an expression for the
system reliability according to the configuration under
concern.

2. GENERALIZED MARKOVIAN MODEL FOR A
SYSTEM OF N UN-IDENTICAL REPAIRABLE
COMPONENTS

A. Transition probability matrix

The transition probability P, § is defined as the
probability of system to move form state i at time t, " S,
(t)" to state j at time t+6t, 5 (t+4t)". To determine the
transition probability matrix, the following postulates are
helpful:

i) P = 4 () 8, when the transition occurring
between t and t + &t includes only the failure of the
i"™ component with a constant failure rate A

i) P = p (1) 8, when the transition occurring
between t and t + 8t includes only the repair of the

i’ component with a constant repair rate H;.
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and t + &t includes more than failure or repair.

= zero, when the transition occurring between t

Under these postulates,

The transition probability matrix for a system of n-
unidentical repairable components is given by:

0 1 2 2*-2 2*-1
.
1-Y 2 A A 0 0
0 = 1 1 2
1 2
by 1= Aemy 0 0 0
p=2 i=2
1.1 .
| ™ 0 1—(1}-; Aty 0 0
-1 .
0 ] 0 . 1=+ ) A
i=2
0 0 0 ' 0 1

As an illustration on how the matrix is constructed
consider the state S; (t):

As one repair completion takes place in 8t:

Pl.O = ul 8t

As one additional failure takes place in dt:

Pipe1 = 428 Prges = A3 86, Progg = 4, 8L

No more than one failure and repair completion in 8t
are allowed and hence

Pian = Pion+1 =

)

i=1
As no state change has taken place

n
Py, = 1- (Y A+py)bt

=2

B. State probability differential equations

The state probability P; (1), j = 0,1,2...,2"-1, is defined as
the probability for the system to be in state j at time L.
This probability can be viewed as the result of solving a
set of 2" first-order linear differential equation given by:
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dpm)-POV @)
dt
where

P(t) = System-state probability vector at time t whose
entries are the system state probabilities at time
i

V =  differential transition matrix, [as given by
expression (P-I) where I is Kronecher delta
matrix [3]], whose entries are the component
failure and repair rates.

The jm element read from identity (2) is:

2 =1
in(t) = E P,(OP,; ; ,j=0,1,2,..2% -1 3)
dt i=0 ’

with the tremendous progress in computer programming,
there are many software packages that can solve the set of
differential equations given by identity (2). For easier fed
to the computer, the following recurrence relation can be
utilized:

For j=0 the resultant differential equation is :

n n
d
— B (D=(-Y A)P®+ Y KEO® (4)
dt i=1 i=1

For 0 < j < n the resultant differential equations are:

n a-1

%Pj(t) SO0 SERE RO ICE SEUE I
For n < j <2" -1 the resultant differential equations are:

din(t) =}: lj';Pj_;(t) —[E Aj.l + E p’..;]Pj(t)
t k-1 = k=1

n-m

+ Z pj’lej(t) for,m=2,3,4,...,2"-1
=1

m-1 m
i=[Y O1+2,. 3 ® (4.0)
i=1 i=1

where
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).jj,pj i failure rate, repair rate of k™ bad
component in state S;.

Pj,k (t) State probability § when the k™ bad
component is replaced by a good one.

‘ lj,l W; =  Failure rate, repair rate of ¢ ! g00d

component is replaced by a bad one.

n= Total number of components.

m = Number of bad components in the state SJ.

3. SPECIAL CASES
3.1 Un-identical/nonrepairable components
One can simply get the relevant set of differential

equations by substituting y; =0 in equations (4.a)-(4.c).
The result is:

L. 0=(-3 2)P,® (5.a)
dt i
%Pj(t)=)'jpo(t) =) X4-2)P,®),j=1,2,,..0 (5b)
i=1
Edfpj(t):z AP ©-(3 4 )P0 (5.0)
k=1 1=1

for, m = 2,3,...,n

j= [2(’)1+1 [2 D1+2,.. E(:‘)

i=1

As this set contains uncoupled differential equations, the
st can be solved analytically using Laplace transform
technique with following boundary conditions:

Py(0) = 1, and P; (0) = O for j > 0 (6.2)
2-1

P()=1 (6.b)
j=0

Depending on the value of j, the solution can be derived
&
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j=0:
Po(t)=exp[—E A;t] (7.a)
i=1
0 <] =i
P, (1) = exp ((-§ xwx,.)tl-exp[—g; At] (b
2
n <= E(f)
i=1
n-2 2 n-2
pi®=expl- 3 4,01~ 32 expl-(E &y, + ]
k=1
+ exp [-(E A0t (7.¢)
i=1

357’ * {n 1 nevapj E(nz) Odd

i

IR

k=1

P(t)= eXp[):A D+ E{( DTexp[- (')'fz
n T n

+) T exp [(X 4= X At -expl-(¥ At (7.d)
i=1 k=1 i=1

m = 468,., (-, 200 .J>Z: (),even

T
P()= exp[z: a8+ ):c -1)Texp[ - Q“, Gt Al
k=1

a T 2("’”
+°${(El li'kE A’k])t“* 2 (= 1)'/2°le (E A E h)tl
i= =1
+ exp ['(E At (7€)
i=1
It should be noticed that the evaluation Lj .- the failure
rate of k& bad component in state S ;» depends on which
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components that have been bad. The suffix s is used to
assign certain set of those probabilities. Shortly we can

define )‘j oS as the failure rate of the s set of "k"
components.

3.2 Identical repairable components

When 4; and y; are replaced by A and p respectively, the
differential equations (4.a) - (4.c) becomes:

izo
%Po(t)hnlpo(t)m Bp, ), (8.a)
<j<n
%pj(t)=lp.(t)—[(n-l)l#u]l’,(t)*(ll'l)“v..p (8:b)
n<j<2" g

Lp 0 =mAP,_, - [@- m)l+mul!’,(t)+(n—m)w ¢

2= 3 ()01 =[5 @11

i=1 i=1

where

o il
PL(® =Py ®)=.. =P (0)k= ;;Q TN

33 IDENTICAL NON-REPAIRABLE COMPONENT “;

ThxslsthcamplcstcasemWhlchlemnguequal
the differential equations (8.a)-(8.c) becomes:

j=0:
2P, =-0dp, (0 o
dt ’ i E i p l. q

< 1<n
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'R(t)". The expression mainly dependent on the
configuration under considerations. Figures (1) and (2)
show different  configurations for  3-unidentical
repairable.non-repairable component and 10-identical non-
repairable component systems respectively. Formulae for
R (t) are indicated under each configuration.

(a)

(b)

R(t) = P (t) + P,(t) + P,(t)

(c) Xy

R(t) = 1 = Py(r)
Figure 1. Some selected configuration for 3-unidentical.

R(t) = Po(l)

29 o O o Y o £
;

R(t) = P (t) + 8 Pi(t) + 20 P (t) + 16 Psg(t) + 4 P

176(%)

R(t) = P (t) + 10 P,(t) + 34 P,,(t) + 50 P 56(c) + 32 P

0 n‘(C).

Figure 2. Some selected configurations for 10-identical
components.
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5.DEVIATION FROM THE CONSTANT FAILURE
RATE MODEL

It is practically convenient that the hazard function not
to be constant over the period during which the
component failure rate was estimated. To make the
generalized markovian model presented in section (2)
applicable in that case, the following procedure is
suggested:

(i) Assume the hazard to obey an exponential power
model [4] defined as

h(t)=apt? 'exp[atf] (11)

where, @ and p are scale and shape parameters
respectively,
h(t) has a minimum value at t. where t_ is given by

1-Byip
t = (i
. =4 ap )
(12)
(ii) Use the estimated failure rate extracted from actual

operational experience of over a period of time
equals (rt as:

ty
i

(explatf]-exp[L=B 1) (13)

ch B

(iii) Knowing t,t; and i, use equations (11), (13) to get
the parameters a and f.

(iv) Subdivide the whole interval te-t. into a reasonable
number of intervals of equal or not equal widths. For
the first subdivision find the average hazard function
and consider it as A. Use an appropriate value of
W/A to get p.

(v) Construct the transition probability matrix and solve
the differential equations for system state
probabilities.

(vi) According to the configuration under concern, write
down the appropriate formulae for R (t) to be used
in this subdivision.

(vii) Repeat steps from iv to vi for subsequent
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subdivisions to evaluate R (t) for each subdivision
keeping in mind the continuity requirements between
subdivisions.

6. NUMERICAL ILLUSTRATIONS

For the configurations shown in Figure (1), with 4,=1 .
104, 4, = 1.10% 4; = 1.30° and g, = 5 4, i=12%
Figures (3-a) and (3-b) illustrate R (t) in the case of
repairable and unrepairable components. Reliability
responses for the 10-identical component systems shown
in Figure (2), with A= 1.10%, are plotted in Figure (4).
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Figure 3-a. Reliability of 3-unidentical

repairable components response for different

configurations.
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Figure 3-b. Reliability of 3-unidentical non-
repairable components response for different
configurations.
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Figure 4. Reliability of 10-identical non-repairable
components response for different configurations.

CONSISTENCY OF THE RESULTS IS ASSURED
THROUGH:

(i) Reliability of any configuration is always decaying
with time.

(1) Series connection yields minimum reliability and
parallel connection yields maximum reliability. The
reliability of any other configuration lies between
these two limits.

(i) Reliability is fairly low when repair s not allowed.
Considering repair, the reliability slowly decreases
with time.
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