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In this paper the state probability transition equations of the composite power component are solved step by
step to investigate the variation of these probabilities with time. It has been shown that the probabilities
undergo a transient period after restoring the component to service of such length as to necessitate much
cautiousness in applying steady state probability values in power system reliability analysis. The effect of various
transition rates on the transient period is also investigated.

INTRODUCTION

The effect of the reliability of the protection system on
the reliability of power system has been previously
investigated(M). While in reference [1] to [3], the
dependence of the reliability of power systems on the
reliability of their protection systems is pointed out, they
did not propose any method for measuring the reliability
of the protection system. In reference [4], however, a
stochastic model of a composite power component, i.e. the
power component and its protection, is developed for that
purpose. The steady state solution of the probilities of the
composite component being in the different model states
is obtained

Due to the unavoidable imperfect reliability, the
protection system is shown to produce appreciable
reduction in the availability of supply at load points which
is dependent on the probability of composite components
being in the normal operating state.

In this paper the transient solution of the probilities of
the composite component being in the different model
states is investigated. The purpose is to show whether or
not the steady state solution can be used once the
composite component is restored to service after an
outage, and how long the transient period extends. The
effect of different model transition rates on that period is
dso investigated.

The work reported here is important to power system
analysts to properly assess the different reliability indices
at all times, particularly the availability of supply at load
points.

SYSTEM MODEL

Figure (1) depicts the model developed in [1] for the
composite component. A brief description of the different
states follows.

STATE (5) STATE (3)
MALFUNCTION OF SWITCHING. NO
PROTECTION SYSTEM FAILURE
xm ¥ > A6y
"
STATE (1) STATE (2)

5 »|SUCCESSFUL OPERATION
OF PROTECTION svsw§n
(THE QUASI-STATE

NORMAL OPERATION

3
e xe E ‘ 2 (1-s,)
STATE (6) Ao _ STATE (4)
FAILURE OF 5 FAILURE OF

PROTECTION SYSTEM POWER COMPONENT

Figure 1. State space model of composite power
component.

In state (1), the power component is operating normally
in service while the protection system is idle. State (2)
represents the composite component when the protection
system operates successfully under call. The rate of
transition from state (1) to state (2) is A. If the operation
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of the protection system is effected as back up of nother
component, the composite component travels to state (3),
with rate A, where it will eventually be switched back to
normal service after the failed component is isolated. The
rate of transition from state (3) to state (1) is w. If, on the
other hand, the operation of the protection system is due
to a failure in the protected power component, the
composite component travels to state (4), with rate 1,
where the power component is repaired and returned to
normal state (1) with rate p .. The sum 4, +4_ is the total
transition rate Afrom state (2), which is the inverse of the
total expected time stayed in that state. If &, is the
probability of the protection system operating as aback up
system, then 4, = 4 and 4, =4 (1-§,).

If the protection system operates falsely, indicating a
malfunction, the composite component travels from state
(1) to state (5), with rate 4 , where the protection system
is repaired and then the composite component is returned
to state (1), with rate p .

State (6) represents the composite component when the
protection system does not respond to a call indicating its
failure. The power component will eventually be
disconnected by another protection. Transition rate from
state (1) to this state is ;. The protection system will be
repaired and, if the power component is found healthy, the
composite component is switched back, with rate i, to
state (1); otherwise, the composite component travels to
state (4), with rate 4_.

The corresponding stochastic transition probability matrix
is given by:

P =
1{Ar+ Am+ A5)At AsAt AmAt AAt
1-aat SuiAt (1-84)aAt
w At 1-wat
ncAt 1-pcAt
pmAt 1-pmAt
urAt AcAt I{urt ac)At

The matrix p relates the row vector [p(t)] of the six
probabilities of the composite component being in the six
model states at time (t) to the same vector at time (t + At)
as per the relationship:

[p(t+AY] = [p()] P ()
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From (2) the differential equations governing the six
probabilities can be obtained as:

P () = - A+ An+4g py () + wps () + kcpy (1)

+ BmPs (1) + Bpg (O &)
B2 (0 = A pp (V) - Ap (D) (4)
B3 (1) = 48, p, (1) - Ap3 (V) ©)
B4 (D) = (1-8,) Ap; (V) - BePy () + Acpy (1) ©)
Ps(®) = Ay Py (V) - pgy Ps (D ™

Pe(t) = A¢ py (V) - (Ac+pppg (V) ®)

Furthermore, the following condition must be satisfied at
all times;

Pp (O + py(t) + p3(t) + pa(t) + ps(t) + pg(t) = 1 (9

Setting all the derivatives to zero and using (9), the
steady state solution is obtained as O

Pis)) = Whm Hc (Ac +19/A (10)
Pass) = WAs By He(A. +H)/(AA) (11)
Piss) = As O He Bm(Ac TH)/A (12)
Pagss) = [Whm A(1-8)(Ac+p) + WAAi /A ()
Psss) = W Am ke (Ac+B)/A (14)
Poiss) = W Af b Hc/A (15)
where,
A=At pp Wikt L+ AJA) + gy e 4D,

+WAS (1-0, ) t WAL B + Wi (A +p ) A (16)

All rates can be estimated from system statistical date,
therefore, the exact steady state probabilities (10)-(15) are
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readily obtained.
THE TRANSIENT SOLUTION

Probability differential equations (3)-(8) can be solved
step by step giving the time variation of the six
probabilities. If time is extended long enough, one always
arrive at the steady state solution. Although accuracy is
always controlled by the proper choice of method and the
size of the time interval, step by step solutions are only
approximate; therefore, one does not expect to obtain the
true steady state values using this alternative. However,
they give a good estimate of the length of the transient
period during which the change in the probabilities with
time is appreciable.

In solving equations (Z?-(S), the Rung-Kutta method with
fourth approximation ) is used. This method needs no
repeated approximations or successive integrations. The
error produced is of the order of the fifth power of the
size of the time interval used.

Furthermore, it is always assumed that the composite
component is initially in state (1). This means that:

p (0) = 1; p,(0) = p3(0)=p4 (0)= ps(0)=pg (0)= 0
AN APPLICATION

A 66 KV overhead transmission line which forms a part
of the Alexandria area subtransmission grid is considered
as a representative component. The different model
transition rates of this composite component from line
statistical date is given in Table (1).

Table (1). Transition rates of sample transmission line.

A | A Ap | Ac| B | Be | Be| W |8 A
12/ 0.15[ 0.15 [ 0.2 [ 2000] 2000] 280 8800{ 0.2 [ 1.3X%10°

The transient behavior of the six probabilities is shown
in Figures (2) and (3). It is evident that it took up to 72
hours for the probabilities to arrive at a steady state. The
values of the six probabilities at hour 72 is given in Table
(2). Also given are the exact steady state as computed
from equations (10)-(15) and the corresponding

percentage errors.
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Figure 2. Variation of probability p; with time.
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Figure 3. Variation of probabilities p, to pg with time.

72 hours is quite a long period of time in power system
operation, therefore during such period, power system
analyst should be prepared to use probability transient
values when assessing reliability indices.
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Steady State [ Exact Steady| Percentage
From Transient State Error
solution

p| 09975 0.99641 0.034
p, | 09201 x10® | 09198 x10® |  0.034
py | 02718x10% | 02717 x10* [  0.035
ps | 03077 x10% | 03416 x102 | -9.928
ps | 07476 x10* 07473 x 10*|  0.040
| pg | 07475 x10* | 07472x10* | 0.040

-—#
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EFFECT OF TRANSITION RATES ON TRANSIENT
PERIOD

Several transient solutions of the sample component are
obtained to investigate the effect of different transition
rates on the length of the transient period. In each
solution one of the rates is changed while keeping all
other rates fixed at their values of the base case given in
Table (1). Although in each case the steady state
probability values have changed, it is found that none of
the rates, except the repair rate of the power component
K., has an appreciable effect on the length of the transient
period. As for the effect of p, on that length, the results
obtained for seven different values of p, as given in Table
(3), clearly show that as the repair of the power
component following a failure is accelerated, as indicated
by increasing p., the transient period becomes shorter.
This justifies, from reliability analysis point of view, the
efforts made to accelerate the repair of failed power
components and their quick restoration to service.

Table (3). Effect of u. on the length of the transient

period.
He 70 140 |280| 450 | 600 |1000| 130
0
e e | 456:29[186.65( 72 [ 35.66 | 22.59 | 9.52 [ 6.02
hours
CONCLUSIONS

A previously developed model of the composite power
component is used to investigate the behavior of the
probability values of the component with time. These
values are shown to change with time before arriving to a
steady state. This transient period is found to be of such
length that power system analysts may need to use
probability values different from the steady state in their
reliability calculations.

The length of the transient period shown to be affected
only by the rate of repair of the failed power component
in a way that it becomes shorter, hence less important in
analysis, as the rate of repair of the power component
becomes larger, emphasizing the importance of accelerated
repair of failed power components, at least from the point
of view of reliability analysis.
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