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ABSTRACT

Optical fibers exhibit losses due to thermal microbending that occurs to the fiber axis during any significant
temperature drop. Thermal microbending loss coefficient is found to depend on the fiber parameters as well

as the number of propagating modes.
INTRODUCTION

Multimode optical fibers are still important for special
applications such as local area networks. Research and
development on these fibers is now devoted to decreasing
operational losses exhibited by the fiber during optical
power transmission. Of these mechanisms, is the
microbending loss [1,2] and the thermal microbending loss
which results from any significant drop in the operating
temperature.

For stable performance, optical fibers are coated to be
protected from external influences. However, the coatings
may have different thermal expansion coefficients than the
fiber core. These differences yield unlikely length
contractions and, consequently, a series of random bends
along the fiber axis.

Thermal microbending is calculated through a loss
coefficient which is a function of both the fiber parameters
and the operating conditions. We have shown, in an
earlier work [3], how to control the value of this
coefficient for single-mode optical fibers. The object of the
present work is to generalize the previous work for the
multimode type of fibers. We present an analytic study to
indicate how the parameters affecting the thermal
microbending coefficient can be compromized in the case
of graded index multimode optical fibers.

MODEL AND ANALYSIS

Under the compressive forces at low temperature,
optical fibers suffer a buckling deformation. However,
fibers will not buckle unless the cooling strain exceeds the
mechanical limit set by the Young’s modulus of elasticity.

A- Cooling Strain

Using the rule of mixtures, the different thermal
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expansion coefficients of the fiber coatings can be lumped
together into an effective expansion coefficient, a., under
the form [4]:
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where a;, A; and E; are, respectively, the thermal
expansion coefficient, cross-sectional area and Young’s
modulus of elasticity of the ith coating layer.

Due to the thermal expansion coefficients difference, a
drop in the temperature by an amount AT, results in an
axial contraction strain, &, which is defined by:

£t = A[r(ac - a,)dT, )

where ar denotes the fiber thermal expansion coefficient.
In general, a. is temperature dependent through the
dependence of Young’s modulii on temperature. This
dependence must be cleared to perform the integration of
equation (2) numerically.

B- Loss Increase Due to Buckling

In the case under investigation, a compressive force, F,
occurs during the temperature drop. To explain the loss
increase, a bending model related to the buckling effect
was proposed [5]. In this model, it is assumed that the
buckling deformation follows a helical path to which the
fiber bending radius is related by:
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where R is the spiral radius, ¢ is the angle between the
fiber and the normal to the central axis and &4 is the
strain difference represented by:

€4 = & - &m, 4)

where &, is the mechanical strain.
Applying the theory of elastic stability, the equilibrium
equation for the forces at low temperature is given by [6]:
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where Eg is the fiber Young’s modulus of elasticity, I is
the geometrical moment of inertia and x is the spring
constant determined, under the assumption that other
coatings rather than the primary are rigid, from [7]:
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where rp, E; and v are, respectively, the primary radius,
Young’s modulus of elasticity and Poisson’s ratio, and r¢
is the fiber radius.

The periodical solution that satisfies the buckling
conditions can be written as:

y = ymsin(zn—z), Y]
P

where P is the spiral pitch. When the solution is submitted
to equation (5), one can get the following expression for
the minimum force, Fp,;y, that can result in a buckling to
the fiber axis:

2
Fom = r”/nEfx . (8)

to which the corresponding spiral pitch is:
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But, the fiber bending radius, py, is related to the spiral
pitch, P, by the relation:

PO (10)
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Therefore, using equation (10), the bending radius, py,
can be rewritten as:

fo = = (i (11)

The obtained thermal deformation is used to estimate
the thermal microbending loss coefficient through the
Marcuse formula [8]:
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where f is the axial propagation constant, { and y are,
respectively, the transverse propagation constants of the
core and the cladding, V is the normalized frequency, r,
is the core radius and Ki(x) is the modified Bessel
function of the Ith order, with:

e, =2,m=20 e, =1Lm=#0

The suffix m stands for the modal number. Hence,
equation (12) calculates the respective loss for each mode.
All losses for different modes are then added to each
other to give ay, the overall microbending loss coefficient:

M
ay = NI (13)

m=1

C- Analysis of Biquadratic-Index Fibers

Thermal microbending loss coefficient of an optical fiber,
operating at a certain wavelength 4, is controlled by its
refractive index profile and its propagation constants.
Practically, for a biqudratic-index profile, the core
refractive index is defined through two tailoring
parameters, A and B, by:
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The effect of the total number of the propagating

1 .0
modes, M, on the microbending loss is given in Figure (3),
where it is clear that a negligible loss is added to the
overall loss for M > 6.
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(Effect of number of modes, M).
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Figures (4, 5 and 6) confirm the importance of the
appropriate design of multimode optical fibers. The core
radius and the primary and secondary coatings radii must
be chosen to maintain the overall microbending loss as
low as possible. To achieve this, thinner fibers and thicker
coatings are recommended.
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Figure 6. Variation of the overall microbending loss
coefficient, ay, with the core radius, rc.
(Effect of secondary coating radius, rg).
CONCLUSION

Thermal microbending loss was studied for multimode
biquadratic-index optical fibers. It was shown that the
thermal deformation, and hence the microbending loss,
increase with the temperature drop. Geometrical
dimensions of the fiber and its coatings have to be
adjusted, using the obtained curves, to maintain the
mircobending loss within the permissible level.
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