ROLLER CHAIN MECHANISMS PART II- INTERMITTENT MOTION MECHANISMS

Sabry A. El-Shakery
Production Engineering and Design Department, Faculty of Engineering, Menoufia University, Menoufia, Egypt.

ABSTRACT

This work points out the design and constraint equations by which the combined flexible-planar mechanism can be an additional new intermittent motion mechanism. This mechanism can be used to realize finite intermittent motions. Moreover, such mechanism can be designed for a single or multiple dwells. Numerical examples are given to illustrate the simplicity of carrying out the design procedure and the potentiality of such contribution in mechanisms field.

NOMENCLATURE

A Coefficient or vertical component of the position of joint B,
C Coefficient or chain length,
D Horizontal component of the position of joint B,
f Angular acceleration,
K Coefficient,
L Coupler length or distance between the pivot Q and center position O (Figures (1) and (2)),
m and n Numbers of dwells and sprockets respectively,
r Radius of circular path (Figure (1)) or of sprocket (Figure (2)) or distance between Q and joint B,
R Crank radius,
$0 \quad$ Center position of the circular path (Figure (1)) or of the sprocket (axle) (Figure (2)),
Q Position of the crank pivot which locates the original position of $\mathrm{X}-\mathrm{Y}$ axes,
$S \quad$ Input path (Figure (1)) or displacement of joint 3 (Figure (2)),
X and Y Horizontal and vertical components of O respectively,
$\beta \quad$ Contact angle between the chain and sprocket measured from y-axis of the sprocket axle in direction of the motion, Total angular displacement,
Angle between the axles of the two adjacent sprockets i and i1,
$\Psi \quad$ Inclination angle of the straight portion of the chain,
$\omega \quad$ Angular speed,
$\Phi \quad$ Angular displacement of the crank R or angle between the tangent point I and x-axis,
θ Angular displacement,
v Dwell position,
Δ Interval,

Subscripts

b Joint B,
c Circular portion,
d Driving,
e Ending position,
i Number of sprocket ($\mathrm{i}=1,2, \ldots, \mathrm{n}$),
1 Coupler,
p For angular position ϕ,
o Distance Z or X and Y components of position of joint B,
s Starting position or straight portion,
t Chain between the two adjacent sprockets,
II Second case,

Superscripts

First derivatives with respect to time,
" Second derivatives with respect to time.

INTRODUCTION

Intermittent motions can be easily realized by dwell mechanisms. These mechanisms are, generally, important for their many uses in machine tools , packing, indexing and textile machines. Usually, there are two groups of dwell mechanisms. The first group is used to accomplish a perfect or finite dwell, these finite-dwell mechanisms are the standard external or internal Geneva, Ratchet and intermittent gearing mechanisms [1-6]. The second group is formed by the combination of two or more simple
mechanisms and give imperfect or momentary dwells, such as six-bar planar mechanisms [7-10]. The fundamental difference between the two groups is in the generated motion within the duration of the dwell as will be explained later. Furthermore, the first group mechanisms have a locking device. On the other hand, in the second group, the locking is achieved kinematically i.e. there is no locking device to have dwell. The kinematic and dynamic analysis of the finite dwell mechanisms are presented in [1-6]. A derivation of the displacement equation and dwell characteristic of the spherical geared five-link mechanism have been developed in [5]. Also,a unified analysis formula and optimization procedure on design of external and internal parallel indexing cam mechanisms have been established in [6]. The design equation for single or multiple momentary dwells have been formulated in [7-10]. This survey papers showed that there are few number of dwell mechanisms which can be designed for multiple dwells and that the complexity involved in the analysis of these mechanisms often makes it difficult to obtain either an analytical or a simple numerical solution. The first part of this work [11] presented the general concept of a suggested combined mechanism (rigid crank-coupler links connected in series with roller chain sprocket system). That part showed that such combined mechanism can be designed to achieve different motions including intermittent motion. Consequently, the main purpose of this work is to carry out the design and constraint equations for roller-chain dwell mechmisms, with one or multiple dwells, as a first time.

2- GENERAL CONCEPT OF DWELL

Usually, dwell occurs due to the cancellation of the relative motion of one link of the mechanism with respect to the other. The following sections introduce the mathematical expressions for the criteria and characteristics of the dwell.

2.1 Dwell critcria

In Figure (1) , R and L are rigid kinematic links connected together by -joint A. L pulls R which rotates by ϕ about the pivot Q , while L -is rotated by $\theta \mathrm{l}$ about joint A due to the given path S . By the previous concept of the dwell, the physical meaning of the dwell in the motion of R states that "For fixing link R (R remains stationary) i.e. $\phi=$ const., when joint A remains stationary,joint B moves on a circular path of radius L with center at joint A."

Figure 1. Dwell Representation.
Therefore, the input path S is assumed to be circular arc of radius r_{s} with fixed center $O_{s} . L_{s}$ is the distance between the pivot Q and O_{s} and inclined by an angle α_{s} with the X -axis as shown.
The solid lines $\mathrm{QA}(\mathrm{R})$ and $\mathrm{AB}(\mathrm{L})$ represent the starting position of the circular path S at which r_{s} has an angular position θ_{s}, while the dashed lines $Q A_{1}(R)$, and $A_{1} B_{1}(L)$ represent the ending position of the circular path S at which ϕ becomes ϕ_{1} and both θ_{i} and θ_{s} increase to $\theta_{\mathrm{n} 1}$ and ϕ_{s} respectively. Hence, we have two dyads, one is represented by R, L and S and the other is constructed by L, r_{s} and S. These dyads reveal the following mathematical expressions.

-At starting position

$$
\begin{equation*}
R e^{j \Phi}+L e^{j \theta t}=L_{s} e^{j \alpha_{s}}+r_{s} e^{j \theta s} \tag{1}
\end{equation*}
$$

-At ending position

$$
\begin{equation*}
R e^{j \not \phi_{1}}+L e^{j \theta}=L_{s} e^{j \alpha_{s}}+r_{s} e^{j \theta s} \tag{2}
\end{equation*}
$$

Where the right hand parts describe the finite circular arc path which exists if and only if the following necessary conditions are satified;

$$
\left.\begin{array}{l}
\mathrm{L}^{2}=\left(\mathrm{X}_{\mathrm{s}}-\mathrm{X}_{\mathrm{A}}\right)^{2}+\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{A}}\right)^{2}=\left(\mathrm{X}_{\mathrm{B} 1}-\mathrm{X}_{\mathrm{A} 1}\right)^{2}+\left(\mathrm{Y}_{\mathrm{B} 1}-\mathrm{Y}_{\mathrm{A} 1}\right)^{2} \\
\text { and } \tag{3}\\
\mathrm{r}_{\mathrm{s}}^{2}
\end{array}=\left(\mathrm{X}_{\mathrm{s}}-\mathrm{X}_{\mathrm{OS}}\right)^{2}+\left(\mathrm{Y}_{\mathrm{B}}-\mathrm{Y}_{\mathrm{OS}}\right)^{2}=\left(\mathrm{X}_{\mathrm{B} 1}-\mathrm{X}_{\mathrm{OS}}\right)^{2}+\left(\mathrm{Y}_{\mathrm{B} 1}-\mathrm{Y}_{\mathrm{OS}}\right)^{2}\right) ~ \$
$$

By inspection, we can find out the criteria of dwell as; For link R remains stationary (fixed) i.e. $\phi=\boldsymbol{\phi}_{1}=$ Const., if and only if the following conditions are satisfied.
$\mathrm{R}=\mathrm{L}_{\mathrm{s}}, \mathrm{L}=\mathrm{r}_{\mathrm{s}}$ and $\phi_{1}=\phi=\alpha_{\mathrm{s}}$
Therefore,

$$
\theta_{t}=\theta_{s}, \theta_{\imath 1}=\phi_{s}
$$

If the conditions of Equation. (4) are satisfied, the positions of joint A and O_{s} coincide, also the conditions of Eq. (3) are verified. This means that joint A is stationary. In the case of approximate verification of conditions of Eq. (4) , the finite dwell could not be existed but a momentary dwell may be occurred where small variation in ϕ is existed. During the finite dwell period, the angular velocity ω and acceleration f of the crank R should be zeros.

2.2. Dwell Characteristics

These characteristics are the positions, period and frequency of the dwell.
i- The dwell duration $\Delta \theta$ can be easily estimated by;

$$
\begin{equation*}
\Delta \theta=v_{e}-v_{s} \tag{5}
\end{equation*}
$$

Where;
\mathbf{v}_{e} Ending angular position of the dwell at which one or more conditions of equation (4) are violated.
v_{s} Starting angular position of the dwell at which the conditions of equation (4) are satisfied.

Referring to Figure (1), the following relation can be pointed out;
$1-v_{\mathrm{s}}$ and v_{s} are existed and can be estimated by;

$$
\begin{equation*}
v_{\mathrm{s}}=\theta_{\text {in }} \tag{6}
\end{equation*}
$$

Where $\theta_{\text {in }}$ at which the following equalities are occurred;

$$
\begin{align*}
& \phi=\theta_{t}=\alpha_{S} \\
& \text { and } \tag{7}\\
& r_{b}=R+L=L_{S}+r_{S} \\
& v_{S}=\theta_{i n} \tag{8}
\end{align*}
$$

Where $\theta_{\text {in }}$ at which the following equalities are satisfied;

$$
\begin{equation*}
\theta_{\mathrm{i}}=\alpha_{\mathrm{s}}+\phi_{\mathrm{s}} \tag{9}
\end{equation*}
$$

and

Where $\phi, \theta_{\mathrm{a}}$ and r_{b} : Parameters are function of the input angular displacement $\theta_{\text {in }}$

2-The dwell period $\Delta \theta$ can be obtained by;

$$
\begin{equation*}
\Delta \theta=\phi_{\mathrm{s}}-\alpha_{\mathrm{s}} \tag{10}
\end{equation*}
$$

ii-The dwell frequency M which is the number of dwells per operating cycle, may be obtained by;

$$
\begin{equation*}
\mathrm{M}=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{~N}_{\mathrm{ci}} \mathrm{~m}=1,2, \ldots, \mathrm{n} \tag{11}
\end{equation*}
$$

Where;
N_{ci} is the number of circular arc paths which satisfy conditions of equation (4)

3. DESIGN APPROACH

A general approach for the design of the intermittent motion mechanisms is presented. The approach involves the following steps;

3.1 Suggested Mechanism

The suggested mechanism consistes of a roller chain with two or more sprockets placed in a general orientation. One of the sprockets, called driving sprocket,provides the input angular displcement θ_{1} in the counterclockwise direction. The motion of the roller chain is transmitted to a crank \mathbf{R} through a coupler L. This motion has either a straight or circular path S as stated in [11]. In order to obtain the relation between ϕ and θ_{1} within an operating cycle, consider a portion of the system shown in Figure (2).

Figure 2. Suggested system, - first case, --- second case.
adjacent sprockets i and $\mathrm{i}+1$, the chain is connected with the crank R through the coupler L . The sprocket center (axle) O_{i} is located at X_{i} and Y_{i} and displaced by L_{i} from the crank pivot Q . L_{i} is inclined by an angle α_{i} with X -axis. The $\phi-\theta_{1}$ relation for this part of the system is carried out as follows;

3.2 Geometric Analysis

The geometric analysis of the suggested mechanism, Figure (2) gives;

$$
\begin{align*}
& \mathrm{L}_{\mathrm{i}}=\sqrt{\mathrm{X}_{\mathrm{i}}^{2}+\mathrm{Y}_{\mathrm{i}}^{2}} \text { and } \alpha_{\mathrm{i}}=\tan ^{-1}\left(\mathrm{Y}_{\mathrm{i}} / \mathrm{X}_{\mathrm{i}}\right) \tag{12}\\
& \mathrm{Z}_{\mathrm{i}}=\sqrt{\Delta \mathrm{X}^{2}+\Delta \mathrm{Y}^{2}}, \mathrm{C}_{\mathrm{i}}=\sqrt{\mathrm{Z}_{\mathrm{i}}^{2}-\Delta \mathrm{r}^{2}} \tag{13}\\
& \zeta_{\mathrm{i}}=\tan ^{-1}\left(\mathrm{Y}_{\mathrm{s}} / \mathrm{X}_{\mathrm{s}}\right), \theta_{\mathrm{oi}}=\tan ^{-1}(\Delta \mathrm{Y} / \Delta \mathrm{X}) \tag{14}\\
& \alpha_{\mathrm{ti}}=\tan ^{-1}\left(\Delta \mathrm{r} / \mathrm{C}_{\mathrm{ti}}\right), \mathrm{i}=1,2, \ldots \ldots . \mathrm{n} \tag{15}
\end{align*}
$$

where $\mathrm{X}_{\mathrm{s}}=\mathrm{L}_{\mathrm{i}}{ }^{2}+\mathrm{L}_{\mathrm{i}+1}{ }^{2}-\mathrm{Z}_{\mathrm{i}}^{2}, \mathrm{Y}_{\mathrm{s}}=\sqrt{\left(2 \mathrm{~L}_{\mathrm{i}} \mathrm{L}_{\mathrm{i}+1}\right)^{2}-\mathrm{X}_{\mathrm{s}}{ }^{2}}$

$$
\Delta \mathrm{X}=\mathrm{X}_{\mathrm{i}}-\mathrm{X}_{\mathrm{i}+1}, \Delta \mathrm{Y}=\mathrm{Y}_{\mathrm{i}}-\mathrm{Y}_{\mathrm{i}+1}, \Delta \mathrm{r}=\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{i}+1}
$$

n :Total number of the sprockets.
For achieving the actual position of the two adjacent sprockets, the following equations should be considered;

$$
\left.\begin{array}{rl}
\beta_{\mathrm{i}} & =\theta_{\mathrm{oi}}+\alpha_{\mathrm{ti}} \tag{16}\\
\Phi_{\mathrm{i}} & =\mathrm{C}_{\mathrm{i}}+\beta_{\mathrm{i}} \\
\text { and } & \\
\Psi_{\mathrm{i}} & =\mathrm{A}_{\mathrm{i}}+\beta_{\mathrm{i}}
\end{array}\right\}
$$

Where C_{i} and A_{i} are values depending on the quadrant at which the position of the two sprockets (i and $\mathrm{i}+1$) are located. Hence, C_{i} and A_{i} are estimated according to the following restrictions;
$\left.\begin{array}{lll}C_{i}=0.5 \pi & \text { and } A_{i}=\pi & \text { For } 0 \leq \beta_{i} \leq \pi \\ C_{i}=0.5 \pi & \text { and } A_{i}=-\pi & \text { For } \pi \leq \beta_{i} \leq 1.5 \pi \\ C_{i}=-1.5 \pi & \text { and } A_{i}=-\pi & \text { For } 1.5 \pi \leq \beta_{i} \leq 2 \pi\end{array}\right\}(17)$
These three conditions verify any possible positions of two adjacent sprockets. The total angular displacements of
the driving sprocket $1, \tau_{\text {si }}$ and $\tau_{\text {ci }}$ which are corresponding to the straight and circular portions ,respectively, are estimated by;

$$
\left.\begin{array}{rl}
\tau_{\mathrm{si}} & =\left(\mathrm{C}_{\mathrm{ti}} / \mathrm{r}_{1}\right) \cdot 180 / \pi \tag{18}\\
\text { and } \\
\tau_{\mathrm{ci}} & =\left(\Phi_{\mathrm{i}+1}-\Phi_{\mathrm{i}}\right) \cdot \mathrm{r}_{\mathrm{i}+1} / \mathrm{r}_{1}
\end{array}\right\}
$$

Where the condition of $i=n$ reveals $\tau_{c n}$ as;

$$
\begin{equation*}
\tau_{\mathrm{cn}}=\mathrm{K}_{\mathrm{t}}-\left(\Phi_{\mathrm{i}}-\Phi_{1}\right) \tag{19}
\end{equation*}
$$

where;

$$
K_{\mathrm{t}}= \begin{cases}2 \pi & \text { for } \phi_{\mathrm{n}}>\phi_{1} \\ 0 & \text { for } \phi_{\mathrm{n}}<\phi_{1}\end{cases}
$$

3.2 Kinematic Analysis

These analysis are carried out as;

3.2.1 Position Analysis

As stated in [11] and referring to Figure (2), the governing equations of the crank R and coupler L are given by;

$$
\left.\begin{array}{l}
\mathrm{R} \sin \Phi+\mathrm{L} \sin \theta_{\mathrm{i}}=\mathrm{A}_{\mathrm{o}} \tag{20}\\
\text { and } \\
\mathrm{R} \cos \Phi+\mathrm{L} \cos \theta_{\mathrm{i}}=\mathrm{D}_{\mathrm{o}}
\end{array}\right\}
$$

Where

$$
\left.\begin{array}{l}
\mathrm{A}_{\mathrm{o}}=\mathrm{L}_{\mathrm{i}} \sin \alpha_{\mathrm{i}}+\mathrm{r}_{\mathrm{i}} \sin \Phi_{\mathrm{i}}+\mathrm{S} \sin \psi_{\mathrm{i}} \tag{21}\\
\mathrm{D}_{\mathrm{o}}=\mathrm{L}_{\mathrm{i}} \cos \alpha_{\mathrm{i}}+\mathrm{r}_{\mathrm{i}} \cos \Phi_{\mathrm{i}}+\mathrm{S} \cos \psi_{\mathrm{i}}
\end{array}\right\}
$$

For $0 \leq \theta_{\mathrm{i}} \leq \tau_{\mathrm{si}}$ which corresponds to the straight portion C_{t}.
And

$$
\left.\begin{array}{l}
A_{o}=L_{i+1} \sin \alpha_{i+1}+r_{i+1} \sin \varepsilon_{i+1} \\
D_{o}=L_{i+1} \cos \alpha_{i+1}+r_{i+1} \cos \varepsilon_{i+1} \tag{22}\\
\varepsilon_{i+1}=\boldsymbol{\Phi}_{i}+\theta_{i+1}, \theta_{i+1}=S / r_{i+1}, S=r_{1} \theta_{1}
\end{array}\right\}
$$

For $0 \leq \theta_{1} \leq \tau_{\mathrm{ci}}$ which corresponds to the circular portion of sprocket $\mathrm{i}\left(\tau_{\mathrm{ci}}\right)$.
After performing some mathematical manipulations, equations (20) can be transformed to one equation as;

$$
\begin{equation*}
\mathrm{A}_{\mathrm{o}} \sin \Phi+\mathrm{D}_{\mathrm{o}} \cos \Phi=\mathrm{Y}_{\mathrm{p}} \tag{23}
\end{equation*}
$$

Solving for ϕ [12], we get

$$
\begin{equation*}
\Phi=\tan ^{-1}\left(\mathrm{Y}_{\mathrm{p}} / \mathrm{X}_{\mathrm{p}}\right)-\lambda \tag{24}
\end{equation*}
$$

Where

$$
\begin{align*}
& Y_{p}=\left(r_{b}^{2}+R^{2}-L^{2}\right) / 2 R \\
& X_{p}=\sqrt{r_{b}^{2}-y_{p}^{2}}, r_{b}=\sqrt{A_{o}^{2}+D_{o}^{2}} \tag{25}\\
& \lambda=\tan ^{-1}\left(D_{o} / A_{o}\right)
\end{align*}
$$

Equation (24) yields two values for ϕ since X_{p} has two values as shown in Figure (2) by ϕ and $\phi_{\text {II }}$. In the first case joint B leads or pulls the crank R, named leading case. While, in the second case joint B lags or pushes the crank R, termed as lagging case. The analysis of the second case, ϕ_{II}, will be given later on. From the geometry of Figure (2) the coupler angular position $\theta_{\mathbf{t}}$ is expressed by;

$$
\begin{equation*}
\theta_{\mathrm{t}}=\Phi+\beta_{r}+\beta_{\mathrm{t}} \tag{26}
\end{equation*}
$$

Where β_{t} and β_{r} are the angles between the coupler L, the crank R and the direction of r_{b} respectively, therefore these angles are determined by;

$$
\begin{equation*}
\beta_{\mathrm{r}}=\tan ^{-1}\left(\mathrm{X}_{\mathrm{p}} / Y_{\mathrm{p}}\right), \beta_{\mathrm{t}}=\tan ^{-1}\left(\mathrm{X}_{\mathrm{t}} / Y_{\mathrm{v}}\right) \tag{27}
\end{equation*}
$$

Where

$$
Y_{t}=\left(r_{b}^{2}+L^{2}-R^{2}\right) / 2 L, X_{t}=\sqrt{r_{b}^{2}-Y_{t}^{2}}
$$

The design constrains which control the real values of ϕ and θ_{t} and give positive values to X_{p}, equation (25), and X_{v}, equation (27), should be considered.
The $\phi-\theta_{1}$ relation, during one cycle, can be obtained by the previous analysis in addition to the response of other successive two adjacent sprockets, until it reaches to the last two adjacent sprockets n and $\mathrm{n}+1$. Where the sprocket $\mathrm{n}+1$ is the driving sprocket 1 .

3.2.2 Velocity Analysis

Differentiating Equations (20) with respect to time gives two equations which could be solved for crank and coupler speeds ω and ω_{t} respectively as;

$$
\begin{equation*}
\omega=\left(\mathrm{A}_{1} \mathrm{a}_{22}-\mathrm{D}_{1} \mathrm{a}_{12}\right) / \mathrm{D}_{\mathrm{t}}, \omega_{1}=\left(\mathrm{D}_{1} \mathrm{a}_{11}-\mathrm{A}_{1} \mathrm{a}_{21}\right) / \mathrm{D}_{\mathrm{t}} \tag{28}
\end{equation*}
$$

Where;
$\mathrm{a}_{11}=\mathrm{R} \cos \Phi, \mathrm{a}_{12}=\mathrm{L} \cos \theta_{\mathrm{r}}$
$\mathrm{a}_{21}=\mathrm{R} \sin \Phi, \mathrm{D}_{1}=\mathrm{L} \sin \theta_{\mathrm{t}}$

$$
A_{1}=A_{o}^{\prime}, D_{1}=-D_{o}^{\prime}, D_{t}=a_{11} a_{22}-a_{21} a_{12}
$$

()' denotes the derivative with respect to time.

3.2.3 Acceleration Analysis

The differentiation of Equations (28) gives the following angular accelerations of the crank f and of the coupler f_{i} as;

$$
\begin{equation*}
\mathrm{f}=\left(\mathrm{A}_{2} \mathrm{a}_{22}-\mathrm{D}_{2} \mathrm{a}_{12}\right) / \mathrm{D}, \mathrm{f}_{\mathrm{t}}=\left(\mathrm{D}_{2} \mathrm{a}_{11}-\mathrm{A}_{2} \mathrm{a}_{21}\right) / \mathrm{D}_{\mathrm{t}} \tag{29}
\end{equation*}
$$

where
$A_{2}=\left(A_{o}^{\prime \prime}+a_{21} \omega^{2}+a_{22} \omega_{1}^{2}\right), D_{2}=\left(D_{o}^{\prime \prime}+a_{11} \omega^{2}+a_{12} \omega^{2}{ }_{\imath}\right)$
()" denotes the second derivative with respect to time.

3.3 Analysis of the Lagging Case

Referring to Figure (2), the second case is represented by dashed lines. The angular position of the crank $\phi_{\text {II }}$ and the coupler $\theta_{\text {ıII }}$ can be derived as;

$$
\begin{equation*}
\Phi_{\mathrm{II}}=\Phi+2 \beta_{\mathrm{r}} \tag{30}
\end{equation*}
$$

and

$$
\theta_{\mathrm{III}}=\mathrm{K}_{\mathrm{p}}+\Phi+\beta_{\mathrm{r}}-\beta_{\mathrm{t}}
$$

where;

$$
K_{p}= \begin{cases}2 \pi & \text { for } \beta_{\mathrm{t}}>\pi / 2 \\ 0 & \text { for } \beta_{\mathrm{t}}<\pi / 2\end{cases}
$$

Replacing $\phi_{\text {II }}$ and $\theta_{\text {III }}$ instead of Φ and θ_{1} in equations (28) and(29) the velocity and acceleration of both crank R and coupler L, in this case, can be estimated respectively. The total driving angular displacement $\boldsymbol{\theta}_{\mathrm{d}}$, which corresponds to $\theta_{\text {in }}$ of Eqs. (6) and (8), is computed by;

$$
\begin{equation*}
\theta d=\sum_{j=1}^{2 n} \theta_{1 j}=\left(S_{t} / r_{1}\right) 180 / \pi \tag{31}
\end{equation*}
$$

Where;
$\theta_{1 \mathrm{j}}$ Total angular position of the driving sprocket within a straight or circular portion i.
S_{t} Total input displacement of joint B within one operating cycle and is given by;

$$
\begin{equation*}
S_{t}=\sum_{i=1}^{n} C_{t i}+\tau_{c i} r_{i+1} \tag{32}
\end{equation*}
$$

It should be noted that $\mathrm{r}_{\mathrm{n}+1}=\mathrm{r}_{1}$ and that c_{ti} and τ_{ci} are given previously.

3.4. Design Constraints

The necessary constraints for insuring continuous operation are stated in the following sections.

3.4. General Constraints

To avoid locking of the system and to eliminate jamming during operation,the following constraints and limitations must be taken into account;
I- For working domain

$$
\begin{align*}
& r_{i t} \leq r_{i} \leq r_{i u}, L_{i}>r_{i} \\
& r_{i}+r_{i+1} \leq Z_{i} \leq L_{i}+L_{i+1} \tag{33}\\
& R+L \leq\left(L_{i}+r_{i}\right)_{\max }
\end{align*}
$$

$\mathrm{R}-\mathrm{L}<\mathrm{r}_{\mathrm{b} \min }$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \zeta_{\mathrm{i}}=2 \pi$
Where subscripts \mathfrak{i} and u denote lower and upper limits of r_{i}.

II- For controlling the values of ϕ and θ_{t} [Eqs.(24) and (26)]
$\mathrm{L}>0.5 \mathrm{r}_{\mathrm{b}}+(\mathrm{R}+\mathrm{L})(\mathrm{L}-\mathrm{R}) / 2 \mathrm{r}_{\mathrm{b}}$
and
$\mathrm{R}>0.5 \mathrm{r}_{\mathrm{b}}+(\mathrm{R}+\mathrm{L})(\mathrm{R}-\mathrm{L}) / 2 \mathrm{r}_{\mathrm{b}}$
Where r_{b} is given by Eq. (25)

3.4.2 Constraints For Dwell Occurrence

The occurence of the dwell by the mechanism requires verification of Eq. (4)., this can be achieved if and only if the crank R and the coupler L are designed to be as;

$$
\begin{equation*}
\mathrm{R}=\mathrm{L}_{\mathrm{i}} \text { and } \mathrm{L}=\mathrm{r}_{\mathrm{i}} \quad \mathrm{i}=1,2, \ldots \mathrm{~m} \tag{35}
\end{equation*}
$$

Where m is the number of dwells ($\mathrm{m} \leq \mathrm{n}$). The starting and ending positions of the dwell, v_{s} and v_{e} respectively, are determined if and only if the following equalities are achieved,

$$
\begin{align*}
& v_{s}=\theta_{d} \\
& \text { if } r_{b}=R+L=L_{i}+r_{i} \text { and } \phi=\theta_{i}=\alpha_{i} \tag{36}\\
& \text { and } \\
& v_{e}=\theta_{d} \\
& \text { if } \tag{37}\\
& r_{b}=\sqrt{L_{i}^{2}+r_{i}^{2}-2 L_{i} r_{i} \cos \left(\pi+\alpha_{i}-\phi_{i}\right)} \text { and } \\
& \theta_{i}=\phi_{i}+\alpha_{i}
\end{align*}
$$

Where;

$$
\begin{array}{ll}
\boldsymbol{\phi}, \theta_{\mathrm{l}} \text { and } \theta_{\mathrm{d}} \quad \begin{array}{l}
\text { Given by Eqs. (24), (26) and (31) } \\
\text { respectively. } \\
\text { Given by Eq.(25)., }
\end{array} \\
\mathrm{r}_{\mathrm{b}} & \text { 3.4.3 Rotatabilty And Transmission Angle Conditions }
\end{array}
$$

The rotatability of the crank R should be examined by the use of Grashof criterion. Also,the transmission-angles of the slider-crank mechanisms (within straight portions) and of the four-bar linkages (within circular portions) should be restricted in condition that the maximum variation of this angle from the right angle on the entire operating cycle should be minmized [13], if the optimization of such system is required.

4.IMPLEMENTATION

The following mechanisms data which are considered to illustrate the results of the presented analysis, are some of several examined data;

Mech No.	i	$\mathrm{r}_{\mathrm{i}} \mathrm{cm}$	$\mathrm{X}_{\mathrm{i}} \mathrm{cm}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{cm}$
	1	3	5	0
1	2	3	0	5
	3	3	-5	0

$$
\omega_{1}=1 \mathrm{ra} \mathrm{~d}_{\mathrm{d}} / \mathrm{s}, \mathrm{R}=\mathrm{L}_{\mathrm{i}}=5, \mathrm{~L}=\mathrm{r}_{\mathrm{i}}=3 \mathrm{~cm}
$$

Mech No.	i	$\mathrm{r}_{\mathrm{i}} \mathrm{cm}$	$\mathrm{X}_{\mathrm{i}} \mathrm{cm}$	$\mathrm{Y}_{\mathrm{i}} \mathrm{cm}$
2	1	3	5	0
	2	3	0	5
	3	3	-5	0
	4	3	0	-5

Table 1.

n	i	r_{i}	Li	p_{i}	α_{i}	$\Delta \theta$	m	Configuration figure \& Constraints
2	1 2	$\begin{aligned} & L \\ & <L \end{aligned}$	$\begin{aligned} & R \\ & R \end{aligned}$	$\begin{aligned} & \pi / 2+\beta \\ & 1.5 \pi-\beta \end{aligned}$	0	$\begin{gathered} \pi / 2+\beta \\ \end{gathered}$	$\begin{array}{r} 1 \\ - \end{array}$	$\begin{aligned} & r_{1}=L, r_{2}<r_{1} \\ & L_{1}=L_{2}=R \\ & n=2, m=1 \end{aligned}$
2	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	L	$\begin{array}{r} R \\ <R \end{array}$	$\begin{array}{r} \pi / 2 \\ 312 \pi \end{array}$	0 π	$\pi 12$	$\begin{gathered} 1 \\ \\ \hline \end{gathered}$	$\begin{aligned} & r_{1}=r_{2}=L \\ & L_{1}=R, L_{2}<L_{1} \end{aligned}$
2	1 2	L L	$R,$ R	$\begin{gathered} \pi / 2 \\ 3 / 2 \pi \end{gathered}$	0 π	$\pi / 2$ $\pi / 2$	2	$\begin{aligned} & L_{1}=L_{2}=R \\ & m=n=2 \end{aligned}$
3	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	R R R	$\begin{aligned} & \pi 14 \\ & 314 \pi \\ & 312 \pi \end{aligned}$	0 $\pi 12$ π	$\pi / 4$ $\pi / 4$ $\pi / 2$	3	
4	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \\ & \mathrm{~L} \\ & \mathrm{~L} \end{aligned}$	R	$\pi / 4$ $3 / 4 \pi$ 514π $3 / 4 \pi$	0 $\pi / 2$ $\begin{gathered} \pi \\ 1.5 \pi \end{gathered}$	$\pi 14$ $\pi / 4$ $\pi / 4$ $\pi / 4$	4	

5. RESULTS AND DISCUSSION

5.1. Geometric Analysis And Constraints Results

Some results of the geometric analysis and constraint equations are listed in Table (1). This table indicates that the dwell characteristics $v_{s}, v_{e}, \Delta \theta$ and m can be easily determined as the constraints are known. The shaded areas represent the dwell period and frequency. The dwell duration $\Delta \theta$ increases either as the inclination angle α_{i} decreases or as ϕ_{i} increases

5.2. Kinematic Analysis Results

Some results of $\phi, \theta_{1}, \omega, \omega_{1}, f$ and f_{t} of the first case and $\phi_{\text {II }}, \theta_{\text {III }}, \omega_{\text {II }}, \omega_{\text {iII }}, f_{\text {II }}$ and $f_{\text {III }}$ of the second case are plotted versus θ_{d} in Figures (3-8). These figures
indicate the following observations;
1 For the first case, v_{s} occurs when $\theta_{i}=\phi_{i}=\alpha_{i}$. This verifies conditions of equations (7) and (36).
2ϕ delays ϕ_{II} while they are equal during the dwell periods
$3 \phi_{\text {II }}$ lags θ_{t}, while $\phi_{\text {II }}$ leads $\theta_{\text {tII }}$.
$4 \phi_{\text {II }}$ equals to $\theta_{\text {III }}$ at the end position of each dwell period, this means that v_{e} occurs when $\theta_{\text {tII }}=\theta_{\text {II }}=$ α_{I} for the second case
5ω and (ω_{II}) are suddenly decreased and (increased) at v_{s} and (v_{e}) of each dwell respectively, and,
$6 f_{\text {II }}$ and $f_{\text {iII }}$ are much greater in magnitude than f and f_{t} respectively.
In addition, Figures. (3-5) show the results of mech. 1
where $\mathrm{n}=3$ sprockets, three dwells $(\mathrm{m}=3)$ periods of 45°, 45° and 90°,respectively, are occurred at $\phi=0^{\circ}, 90^{\circ}$ and 180°. Also, Figures. (6-8) illustrate the results of mech. 2 where $n=4$ sprockets for dwells $(m=4)$ with equal four periods of 45° are occurred at $\phi=0^{\circ}, 90^{\circ}, 180^{\circ}$ and 270° respectively. These results are in agreement with the -corresponding tabulated one. Then, in point of view of the dynamic effects, it is worth noting that such mechanisms should be operated according to the first case.

Figure 3. Mech. 1-Displacements.

Figure 4-A. Velocity

Figure 4-B. Velocity.

Figure 5. Mech. 1-Accelerations.

Figure 6. Mech. 2-Displacements.

Figure 8. Mech. 2-Accelerations.

6. CONCLUSIONS

As a result of the presented analysis, one easily concludes the following,
1 The combination of the flexible system (roller chain) with crank coupler links gives useful and an additional new intermittent motion mechanisms. These mechanisms can be designed to accomplish a single or multiple dwells without the need of locking device.
2 The analysis and constraint equations could easily be modified to optimize or synthesize such system for specifying a desired motion characteristics. The desired motion would be either reversing or
nonreversing one with or without dwells.
3 The main advantages of the mechanism presented are., The structure of the system is simple.
ii The nature of the analysis procedure is rational.
iii The formulation don't lead to tedious algabraic manipulation in finding the solution for multiple dwell requirements. and,
iv The mechanism can provide dwells with various characteristics (positions, periodes and frequences) within, one cycle. This may be useful in certain industrial applications.

7 REFERENCES

[1] Artobolevsky, I.I., Mechanisms In Modern Engineering Design, Vol. 1-3, MIR Publishers, Moscow, (1979).
[2] Sandor, G.N. and Erdman, A.G., Advanced Mechanism Design, Vol. 1 and 2, Prentice-Hall Inc., N.J., (1984).
[3] Taat, M. and Tesar, D., "A New Interpretation For The Dynamic Phenomena Associated With Geneva Mechanisms", ASME, Journal of Mechanical Design, Vol. 101, Jan (1979).
[4] Chen, F.Y., "Assessment Of The Dynamic Quality Of a Class Of Dwell-Rise-Dwell Cams", ASME, J.M.D., Vol. 103, Oct. (1983).
[5] Lee, T.W. and E. Akbil, "Kinematic Syntnesis Spherical Two-Gear Derives", ASME, J. Mechanisms, Vol. 105, Dec. (1983).
[6] Guoxn, P. et al, "Unified Optimal Design Of External And Internal Parallel Cam Mechanisms", Mechanisms And Machine Theory, Vol. 23, n. 4, (1988).
[7] Harding, B.L., "Hesitation", ASME, J. Engg. for Ind., Vol. 87, May (1965).
[8] Midha, A. and Zhao, Z., "Synthesis Of Planar Linkage Via Loop Closure", Mech. And Mach. Theo., Vol. 20, no. 6, (1985).
[9] Sandgren, E., "Design Of Single And Multiple Dwell Six-Link Mechanisms Through Design Optimization", Mech. And Mach. Theo., Vol. 20, no. 6, (1985).
[10] Danian, H. et al, "Study Of A New Type Intermittent Link Mechanisms", Proc. of 7th IFTOMM world Cong., Vol. 1, Sevillia, Spain (1987).
[11] El-Shakery, S.A. and M.A. Moustafa, "Roller Chain Mechanisms, Part 1: General Concept", Alex. Engineering Journal, Vol. 30, no. 2, (1991).
[12] Myskis, A.D., Advanced Mathematics, MIR Publishers, Moscow, (1975).
[13] El-Shakery, S.A., "Design Synthesis Of Crank Slider Driven By Drag Link Mechanism", Proc. of 5 th IFTOMM, Symp., Vol. 1-1, Bucharest, Romania (1989).

