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mathematical procedure has been developed for estimating cross and machine direction (CD and MD)
pisture profiles. A model is first presented that describes mathematically the process under consideration. The
esence of noise is taken into account. The procedure consists of a least squares parameter identifier for
fimating CD profile deviations and a Kalman filter for estimating MD profiles. Simulation results of the
ocedure are given and are followed by the results of its application to industrial data. The developed

ocedure can be extended to other industrial models.

{ODUCTION

per making processes, the moisture content of
15 it is being made, is measured using a single
scanning sensor located after the paper machine
The sensor in mounted and guided to move in
achine direction (CD) perpendicular to the
at of the paper in the machine direction (MD).
or traverses from front to back and from back to
tinuously, taking measurements at fixed intervals
Due to the MD movement of the paper and the

:ment of the sensor, the resulting measurement

| the paper form a zig-zag pattern as shown in
). The measured profile is a composite of CD
profiles. In [1], the author postulated and
ntally verified the measured profile to be a
function of CD and MD profiles. This
ip forms the model for the present work.
ective of the measurement of moisture on paper
rol the final sellable product [2]. The primary
n to control the MD profile is the Dryer steam
Increasing the steam pressure in the dryer
"a paper machine will result in decreasing the
content. The CD profile is controlled either by
ieating boxes at intervals across the machine’s
i/or by remoisturizing showers. Therefore, in
sontrol the moisture, we must first estimate the
MD profiles from the composite measured

»aper, we develop a mathematical procedure to
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deduce the CD and MD profiles from the zig-zag
measurcments. In section 2, we give a description of the
moisture model based on the work of Lindeborg [1]. The
proposed mathematical procedure is presented in section
3. Based on this procedure, we give, in section 4, the
computational requirements in terms of computer
operations knowing that the calculation is carried out in
real time and that computer time is at a premium. The
simulation results are illustrated in section S5; and the
application of the proposed procedure to an industrial
process is given in section 6.
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Figure 1. Zig-zag measurements due to CD and MD
movements of sensor and paper.
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2. MATHEMATICAL MODEL
The moisture variations can be described as [1]:
Py =M + p" + (1+Bp")y, + O(h) (1)

where:

P, is the (percentage) moisture content at CD
position n, (1sn<N) at time kT (Figure (1)); N
is the total number of CD points at which
measurements are taken; T is the sampling period
between measurements and k is an integer.

M is the known (percentage)

moisture content.
p is the (percentage) profile deviation from the
reference level in CD at position n. By definition:

z:llp“ = 0.

u, is the (percentage) MD variation at time kT.

B is a constant (a function of M and other
constants), and

O(h) represents higher order terms.

reference level

The machine direction variations can be described as:
U =u+ &, (2)

u is the mean (percentage) moisture content in the
MD.
{&€} is a zero mean stochastic process.

The analysis of data indicates that & can be modelled as
a first order process described by:

Ske1 = a8 + W ©)
where:
a is a known constant, and
{w} is a zero mean Gaussian white noise process with
known variance q.

Equation (1) may be rearranged to read:

ve = p" + (1+BpMuy, + v, 4)

where:

yo is the measured profile deviation from the
reference level M, at CD position n and time

instant kT, and

{v} comprises of sensor noisc and neglecting higher
order terms and is assumed to be a Gaussian whilc
noise process with known variance R.

The implication of the zig-zag measurement path in
equation (4) is that when k increases by one, n increascs
or decreases by one (accordingly as sensor movement is
front to back or back to front). This relationship must be
kept in mind through the rest of the paper.

The problem now is to develop a recursive algorithm o
estimate p" (1<n<N), B, u, &, (at each instant k). To
make this estimation, we get at cach instant k (and
corresponding n) the measurement, i.e. the left hand side
of equation (4). It is assumed that we know, or have good
estimates for the parameters a, q and R. Also, on the
assumption that the CD quantities vary slowly, if at all, in
comparison with the MD quantities, the total number of
parameters and states to be estimated are N + 1 (CD
quantities) and 2 (MD quantitics) respectively.

Equations (2), (3) and (4) can be amalgamated into a
state space form given by:

—_—
n

X1 = Ax + W,

e =P +Cx +v (6)
where

GA lOW g ce 1+Bp* 1+Bp"
%=l Al o f Werlw, [ =[(1+Bp*) (1+Bp")]

(7
3. MATHEMATICAL PROCEDURE

Using equations (5) and (6), and assuming that p" and
B were known, the estimation of u and & can be
approached as a Kalman filtering problem. Conversely, i(u
and §, were known, then the estimation of p" and B can
be strived as a least squares parameter identification
problem. The proposed procedure is a bootstrap algorithm
combining these two ideas. Using the present estimales of
p" and B in a Kalman filter, we predict u and &, (a
next instant); then, using this prediction and the
measurement y,f1, we update p™*!, B and so on. The
overall structure of the procedure is shown in Figure (2).
The least squares identifier and the Kalman filter arc well
described in the literature, as for example in [3].
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To increase the robustness of the procedure, a few
heuristic modifications are needed. These are introduced
as follows:

(i) With each CD position n, we associate two
quantities p" (as before) and B" (in place of a
single B). At the end of each scan of the sensor,
we average the N values of B" estimated during the

scan and replace the B" by this average B. With
this artificially introduced set B", the CD
parameters to be estimated are collected into a
2Nx1 vector 0 given by:
8=[p' B' p2 B2 .. pN BN|T ®)
where T denotes transposition.

(ii) At the end of each scan we compute the average of
the N values of p" estimated during the scan. This
average is subtracted from each p" (to ensure

2:1 p" = 0) and finally added to the currently

estimated u.

These two modifications arose from simulation and
practical experience. Intuitively, (ii) above can be seen by
the fact that if the right hand side of equation (4) is

averaged over a scan, with 2 :"l p® = 0, we have u as

the approximate result.
From [3], the least squares identifier for 8 in equation
(8) is given by equations (9), (10) and (11), below.
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Figure 2. Overall structure of the procedure.
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VLT
1L+(¥ )V, T

(10)

Vy = Vk—l

8. = 0, + V. ZL(ye - ) (1)

where  denotes estimate of the quantity under it, and V,
is the 2N x2N covariance matrix at instant k, with value V
(likewise él is an initial value).

In reading equations (9), (10) and (11), the connection
between n and k should not be invoked for those
quantities for which n does not appear as an explicit
superscript. In all such variables all 2N (or 2Nx2N) CD
quantities are simultaneously updated from the scalar
measurement y, and its estimate.

In an industrial environment, the identifier is to be
implemented in a low-cost portable computer. Typically,
in this environment, N is 50 and the sampling period T is
one second. In such an environment, since the sampling
period is not large enough to finish all the computations
in a low-cost computer, the least squares identifier
expressed in equations (9), (10) and (11) cannot be used
directly. Therefore we would like to reduce its size. Ideally
we would like to update 6, and V| locally, i.c. only the
two elements and the 2x2 sub-block corresponding to the
CD position n associated with k. Such a local update can

be achieved if we place restrictions on V, and ¥Py. The

restriction on V_ is that it should be block diagonal with
cach block a 2x2 positive semidefinite matrix. Physically
this implies that we assume that adjacent profiles are not

correlated. The restriction on ¥ will be developed next.

From equations (9) and (6), with the understanding that
everything on the right hand side of (12) is evaluated at

ék, we have:

T T
a n dC‘A dxk A d‘i‘k
¥ A el +HC*—} =I""+Q A 12
36 "de "“{C de} "*"{C da} 12

where:

I™  is a 2Nx1 vector with all elements zero except
the element 2n-1 which is 1.

Q" is a 2Nx2 matrix with all elements zero except
those of the sub-block formed by the rows 2n-1
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and 2n. The non-zero sub-block is given by the
matrix ® in equation (13).

B" B"
p* p*

o = (13)

From equation (12), it is apparent that the first two
terms have the structure that we seek. However, the third
term does not satisfy our requirements as the 2Nx2
matrix can in general have non-zero elements throughout.
This is best seen by expressing the recursive equation fordx, /d 6
for the conditions of our problem [3]. In view of this we
neglect the third term in equation (12). The dropping of
this term can be justified only by simulation.

Since we will now be dealing only with the local versions
of equations (9), (10) and (11), we introduce some
additional notation. P" denotes the sub-block of Vi

corresponding to the covariance of [ p" B n]T while the

corresponding sub-block of ¥} is denoted ¥} and is
given by equation (14).

Wi=[1+B @8 pr(u+Ep)] (14)

To provide the least squares identifier with the ability to
track slowly varying p", B" we use an exponential
forgetting factor ¢, 0 < a < 1.

The Kalman filter design, for estimating x,, is standard.
In equation (5), the covariance of W, is given by Q in
equation (15) with q;=0.

q, 0
0 q

(15)

However, with q; =0, the gain for u will asymptotically
g0 to zero. To avoid this, a small value of q; is used. Z
and K will be used below to denote the Kalman filter’s
covariance and gain respectively.

In any identification algorithm bounds have to be applied
whenever excessively high or low parameter estimates are
obtained. The bounds are selected from apriori knowledge
of the range of values for the parameters being estimated.
Thus whenever the estimate of a variable at any stage of
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the procedure (equations (16) through (24)) is higher or
lower than the appropriate bound, the estimate is replaced
by the transgressed bound.

Based on the ideas presented in this section, we present
the proposed procedure in the order in which it is to be
executed, in equations (16) through (24). On the first pass
through these equations, all variables not defined earlier
are to be provided as initial estimates. When the same
variable appears on both sides of an equation, the current
value of the variable is to be used in evaluating the entirc
right hand side and the results assigned to the same
variable as its new value. Any equations following, when
referring to this variable, will use the new value. At thi
point attention is drawn again to the relationship between
n and k imposed by paper and sensor movement. The

averaging operations on p", B" at the end of each scan
are not shown in the equations below.

T ® u+ & (16)
\p: A [l+l‘3"zk p“zk] (17
n 0 NNTpn
pa 1 o R R ) TR 8
@ a+(y) PRy
[p* B =[p" B°]"+P wicys-30) )
C*=(1+Bp™)[1 1] (20)
Kkzﬂi )
C"Z(C")T+R
a\Trn
& =A(2_M ATho .
CEB{ChN R
F=A-K.C" @)
% =FR +K (v, -p™) )

4. COMPUTATIONAL REQUIREMENTS

Although the procedure appears to require considerable
computation, it should be noted that no more than 2x
matrix is involved in cach equation. The most complex st
of calculations is at the edge of the sheet (at the end of 2
scan). In this case, before processing the nex
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measurement, 60 additions, 60 multiplications, and 20
comparisons are needed. The operations count are
rounded to the nearest higher multiple of 10. End of scan
averaging is assumed to be done recursively. The
comparison operations arise out of the bounds imposed on
the estimated values. In the operations count, the
symmetry of the covariances in exploited. Partial products
used repeatedly are assumed to be computed once and
stored. The storage space for these partial products is
taken into account in the estimate of the memory
requirements given later. Assuming that each operation
takes 40ps, the worst case computation time is 6ms.
Assuming memory access times of the same order, we
require, in the worst case, 20ms for computation. This is
an order of 50 less than the sampling period used
currently in the industry.

The memory space required by data for N CD positions,
exploiting the symmetry in the covariances, is, given,
rounded up, by (70+4N) times the word length for the
number representation. With a word length of 4 bytes and
for N=50, we require 1.5Kb of memory for data storage.
Assuming the program size is similar, the total memory
requirement is about 3Kb. Thus, in terms of speed and
memory, the proposed procedure can be installed on a
low-cost portable computer.

5. SIMULATION RESULTS

The proposed procedure of section 3 was first tested by
simulation. In long duration runs of the procedure, it was
observed that due to the exponential forgetting factor and

the occasional poor estimates of a few B ", the variances

of a few B™ blow up and vitiate further estimates. A
modification of the procedure to prevent this blow up is

now described. The variances of B" are allowed to
increase beyond a limit. The limit is chosen adaptively.

During a scan, a histogram of the variances of B" is
recursively constructed. At the end of the scan, the limit
is chosen as that value within which 85% of the area of

the histogram is enclosed. When the variance of B"
exceeds the limit, two actions are taken: The variance of B"

is set to the limit and the cross-covariance of p* andB"
is set to zero. The latter action is taken to ensure that the

covariance of [ﬁ" Qn]r (a 2x2 matrix) does not turn
negative definite.
A typical simulation result is depicted in Figure (3).
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Figure 3. Simulation results.

In this simulation, the process is modelled by equations
(2), (3) and (4). The process data assumed in N=30,
a=0.9753, q=0.015, R=0.0025, u =0.5 and B=0.5. Profile
deviations are generated as uniform random deviates
within +3.5. The initial parameters for the procedure are
chosen as:

. |0 025 O
i=| |, B= (25)
0 0 031
p" 0 100 O
= NP S= ; l<n<N (26)
B"| |0.10 0 4
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The exponential forgetting factor a is equal to 0.95. The
bounds applied on the estimates are

p®l<5; 01<B"<1; 1<ns<N (27)
051;152; (28)

The estimate of B, for the results shown in Figure (3),
at the end of scans 15 and 16 are 0.43 and 0.45
respectively. Z at the end of scan 15 and P in scan 15
are given in equation (29).

[ 0.05
= (29)

-0.05 0.22 0.16
o PIS -
-0.05 0.06

! 0.16 0.16

From simulations of this type it is observed that, when
provided with reasonable initial parameters and bounds,
fairly accurate CD profile deviation estimates are obtained,
in general, within ten scans but that the estimates ofu
and B, typically, take from ten to twenty scans to be
reasonably accurate.

In simulations, we have knowledge of the true profile
deviations and other parameters estimated by the
procedure. However for industrial data such knowledge
requires off-line tests done at exactly the same points on
the sheet at which the parameters are estimated on-line.
This kind of coordinated off-line tests while providing the
best method of checking the performance of the
procedure, is difficult and time consuming. It would be
desirable to have some other independent on-line testing
method.

A standard result in Kalman filtering theory is that the
innovations sequence (prediction error) of the Kalman
filter which matches the model of the measurement, is
white [4]. If all the information about the parameters and
states are being successfully extracted by the procedure,
then it is reasonable to expect that the innovations
sequence could be used as a performance measure.

| 6. APPLICATION TO INDUSTRIAL DATA

Raw data was collected on-line for a period of
approximately 3.5 hours at a paper mill (Stone-
Consolidated Inc., Laurentide Division, Quebec, Canada).
The data was collected with the MD moisture profile
automatic control system turned off and included a
number of large MD transients. The number of CD points
N is 58 and the average sampling period between points
is 1.03s. The data comprised of 175 scans and included 9
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breaks in continuity. All but 3 of the breaks were of
scan duration. The 3 larger breaks had a duration of 5, 16
and 6 scans.

The analysis of the data was started by first collecting
the contiguous scans into "strings’, numbered from 1 to 10.
Out of the 10 strings, 3 strings in which the transients
were relatively small (string 1 (14 scans), string 3 (28
scans) and string 7 (15 scans)) were used for fixing the
parameters of the procedure. M in equation (1) was
chosen as 5.50, a rounded up value of the average (5.385)
of all data in string 1. The MD variance was estimated by
using Dahlin’s analysis of variance method [5] on strings
1 and 7. On both strings, the MD variance estimate was
approximately 0.4. The value of R which results arc
reported here, is 0.01 and corresponds to a sensor range

error of 0.6% (6xyR). The value of R has becn varied
from 0.09 (sensor range error = 1.8%) to 0.0001 (sensor
range error = 0.06%). The qualitative conclusions drawn
from runs with different values of R are the same as thal
reported here for the case of values of a (correspondingly
q=0.4x{1-a2}) varied from 0.5 to 0.99 in steps of 0.05.
For each value of a the auto-correlation of the innovations
sequence was plotted. It was judged (with a search grid
size of 0.05) that at a=0.85 the auto-correlation besl
satisfies the whiteness criterion. For this value of &
q=0.11. The exponential forgetting actor used in all runs
is 0.95. The initial states, parameters and their covarianc
were set as per equations (30) and (31).

. |0 030 O
Xiw s = (30)
0 0 0401
i 0 100 O
. s Pi= ; l<ngN (31)
B"| |0.50 0 4

The bounds applied on the parameter estimales are
given in equation (32). No bounds were applied on the

state estimates u and &.

p"|<6; 01<B"<1; 1s<nsN (32)

The procedure was run on all 175 scans continuously.
The starting scan direction after each break, is found from
that of the last scan before the break and the number of
missing scans during the break. The initial estimates of the
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parameters, states and covariances at the starting scan
after each break are that estimated at the scan before the
break.

The profile estimation part of Lindeborg’s algorithm [1]
and Dabhlin’s algorithm [5] were also run on this data. In
Figure (4) we show the profiles estimated by all three
algorithms at scan 25 and 150. In this figure, M=5.50 has
been added to the profile deviation estimates obtained
from Lindeborg’s and the new procedure. The Dahlin and
Lindeborg algorithms provide very similar shapes for the
profile estimates. They differ (approximately) by the MD
mean which in the present case causes the Dahlin profile
estimates to jump up or down relative to the Lindeborg
profile estimates due to the presence of large MD
transients. In Table 1, under the column a=0.85, are
shown The mean of the squared differences between
profile deviation estimates obtained from Lindeborg’s and
the new procedure.

Table 1. Mean squared differences between profile
deviation estimates obtained from Lindeborg’s algorithm
and the new procedure.

Scan a=08s a=0.50 Scan a=08S5 a=050
20 0.1953 0.0915 100 0.0800 0.0404
25 0.1833 0.0738 105 0.0451 0.0375
30 0.1600 0.0594 110 0.0489 0.0381
35 0.1486 0.0590 115 0.1128 0.0709
40 0.1078 0.0591 120 0.089%4 0.0513
45 0.1133 0.0609 125 0.0652 0.0367
50 0.1051 0.0467 130 0.0754 0.0368
55 0.1158 0.0478 135 0.0965 0.049%4
60 0.1030 0.0431 140 0.1191 0.0775
65 0.1014 0.0453 145 0.0765 0.0441
70 0.0837 0.0557 150 0.0584 0.0341
75 0.0804 0.0409 155 0.0502 0.0305
80 0.0476 0.0254 160 0.0511 0.0289
85 0.0366 0.0200 165 0.0549 0.0314
90 0.0520 0.0278 170 0.0336 0.0217
95 0.0627 0.0368 175 0.0237 0.0159

From this table and Figure (4), it is apparent that there
are fairly appreciable differences between Lindeborg and
the new profile estimates. We illustrate, in Figure (5), the
initial portion of the auto-correlations (8192 points) of the
innovations sequence obtained from the proposed
procedure for the cases of a=0.5 and a=0.85. From this
figure, it is seen that the auto-correlation for the case
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a=0.85 is much more white than that of case a=0.5. The
mean of the squared differences between the profile
estimates obtained from Lindeborg’s algorithm and the
proposed procedure for the cases a=0.85 and a=0.5 are
shown in Table 1. From Table 1, we see that the profile
estimates of Lindeborg are closer to those of the new
procedure for the case of a=0.5 than for the case of
a=0.85. However, from the auto-correlation functions,
a=0.85 seems to give better estimates.
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Figure 4. Profiles estimated by different procedures.
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Figure 5. Auto-correlation of the innovations sequence
of the industrial data.

7. CONCLUSION

In this paper, a new procedure for estimating cross and
machine direction moisture profiles an a paper machine is
proposed. It can be installed in a low-cost portable
computer. It provides pointwise MD estimates and can be
used to speed up MD control, as it is no longer necessary
to wait for end of scan averaging to estimate u. Simulate
results encouraged application of the procedure to
industrial data. The auto-correlation of the innovations
sequence provides a means of tuning the parameters
needed by the procedure and reveals information about
the process. The structure of the proposed procedure can
be applied to other problems with similar state space
forms by the development of an appropriate (low order)

y.
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