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ABSTRACT

In this paper, a new gradient method for solving systems of linear simultaneous equations is suggested. The
method is shown to converge, and the rate of convergence is investigated. An algorithm for implementing the
method is presented. The results of applying the algorithm to various numerical problems illustrate the

effectiveness and usefulness of the new technique.
1. INTRODUCTION

Several algorithms for solving linear systems of equations
are given in the literature [1-13]. Consider the general
linear system described by the equation:

Ax=f (1)

where the linear operator A, mapping a Hilbert space H
into itself, is bounded, self adjoint and positive definite,
1e.,

vixl, < (Axx) < 8fx],, 8 >y >0 VxeH )
Most algorithms can be expressed as follows:

1) Select an initial approximation x to the solution X
of (1).
ii) For k:= 1 until n, compute

X = X+ Tdy

where d, is chosen such that (v, _;,r,)=0, r, ;=Ax, ;-f,
and t,, and v,; are determined based on the
particular algorithm and whose properties are to be
determined.

This class of methods is essentially that described in [3].
A well known algorithm of this type is the method of
conjugate gradient first discovered by Hestenes and Stiefel
[4], which is applicable if A is bounded, sclfadjoint and
positive definite. They showed that the conjugation
algorithm could be regarded as a variant of Gaussian
elimination on the operator A. Householder [12] described
a class of iterations which is called orthogonalization
methods. An orthogonalization method steps along a set
of specially generated directions until, after a finite

Alexandria Engineering Journal, Vol. 30, No. 3, July 1991

number of steps, a solution is reached.

A closely related approach for solving the system of
linear equations is the well known steepest descent
method [10). The rate of convergence of this method is
not worse than that of a geometric progression with
common ratio p given by:

_(5-y)

STy

However, when p is close to unity, the convergence is very
slow.

In this paper, we propose a new gradient method based
on the steepest descent. An acceleration scheme is used to
improve the rate of convergence of the new method.
Numerical results show that the new method is far
superior than the original steepest descent and outperform
the conjugate gradient method.

2. IMPROVED GRADIENT METHOD

We consider the case where H is a real Hilbert space.
The solution of the system (1) is equivalent to minimizing
the functional [7]:

F(x) = (Axx) - 2 (x) (©)

Starting from an initial guess x, € H, we construct a
sequence of points x, from the expression

X =Xt Td +w, k=12 .. )
where
- k

i=1
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where {§;};-1 5 _ 4 is a system of linearly independent
clements. The unknown parameters t, and aik are
obtained from the minimization of the functional

F(x) = (Axx) - 2(fxy) (6)

This is accomplished by obtaining the solution of the
system of equations:

dF dF
) =0, ) 0,k=1,2,..,i=1,2,..n (7

aqk dty

From equations (4) through (7), we can obtain, via a
simple transformation, the system of equations:

(Aw,d) + T, (Ad, ) = (ded),i=12 .,n (8a)
(Aw,dy) + 1 (Ady,dy) = (dy,dy). (8-b)

Using the properties given in equation (2), this system is
uniquely solvable for any n, and hence the approximation
X, given by equation (4) is unique.

It is noted that when w, = 0, the method degenerates
into the original steepest descent method [10]. By
introducing the correction w,, the aim is to accelerate the
convergence; however, extra computations will be required
at each iteration.

Consider a correction w, in the form:

W=y -t5 =Y (b -1c) = (Ad,b,), i=1,2...0 (9)
i=1

where the parameters bik and cik are found from the
systems of equations

(Ayw¢j) = (dkv¢i)’ (Azka(bi) = (Adk’¢i)’ i=1,2,...,n (10)

If we substitute equation (9) into the system of equations
(8), we can easily see that the first n equations of system
(8) become identities, while the last becomes:

T (Ady,d-z) = (d,d.-Ay,) (11)
Hence the solution of (8) amounts to solving the two

systems of linear equations (10) with the same system
matrix, and equation (11) for t,.
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We notice that, after the first iteration, the first system
(10) has the trivial solution, i.e., y, =0, k=2,3,..., since by
virtue of (3) and (4) we obtain:

disy = FAX = di-T Ad-Awg
Moreover, as is obvious from the system (8)
(e, pd) = 0, i=1,2,..,0, k=12,... (12)
Assuming the initial approximation is given by:
n
x5 =zl: b, (Ax,d) =) i=1,2,..,n (B
-
then, y, =0 for all iterations since
(dy$) =0, i=12 .,n (14)

From this logic, the algorithm becomes,

X =Xt Tl Yy = dy -7 (15-3)
n

dy = FAx ;% SUREREE k = 1Mok (15)
i=1

where the parameters cik and H, are uniquely given by the
system:

(Az,d) = (Adp,d), i = 1,2, ..,n (16-a)

t(Ad,u) = (ddy), k=1,2, .. (16-b)

3. RATE OF CONVERGENCE

To prove the convergence of the proposed algorithm, we
introduce an operator Z, mapping H into itself and given

by:
Zg=g+h geH (17)
where h € H, < H is the solution of the equation:

PA(g + h) = 8 (18)
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ere, P is the projector onto the subspace H,, generated
y the system of elements ¢, ..., §,.

From equations (17) and (18), it follows that the
Pperalor Z is linear and has the properties:

PAZ =0,Z*°=ZQZ=0Q,2Q = Z, (19)
[here Q is the projector onto the subspace H © H,. Since
e system described by equation (1) hes a unique solution
rc I:I for any f € H, and since PAx = Pf, then, when
l: X , in equation (18), we have h = -x_, where x, is the
itial approximation (13). Hence, we have:

X =X, +ZX (20)
onsider the equation:

WV = g 21)
#which veE€H e H, and

W=AZg-="f-Ax, e He H, (22)

ecalling properties (19), and the expressions (17) and
8), we can easily see that the operator W acts in the
bspace H @ H,| and is selfadjoint. Hence, there exist
nstants o, m satisfying the inequality

y<sos<sn<3¥d (23)

+d such that

o> < (Wvy) s vl VveHeH, (24)
rom the preceding discussion, it is easily seen that the
ems (1) and (21) are equivalent and their solutions

€H, v eHeH, are related by:

K =x +2zv, v = ox (25)

tlen, it follows that the problem of minimizing the

ctional (3) in the Hilbert space H is equivalent to that
minimizing the functional

o) = Wvy) - 26e) (26)

the subspace H e H,.
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Theorem:

If the operator A in (1) is bounded, selfadjoint and
positive definite, then the proposed gradient method
described by (15) and (16), converges. Moreover, the rate
of convergence is given by,

L gt IAxy @

llx.-xkll <
Y

where q = (n-0)/(n +0).

Proof.

From the relation,

X = X, + 2Zv, (28)
the sequence {x.}, constructed by (15) and (16) is
connected with the minimizing sequence {v, } of functional

(26), found by the method of steepest descent (v,=0).
From equations (25), (28), (22) and (19), we have

(Ax-AX, XX ) = (Wy-Wy, v-v) (29)
Moreover, from the method of steepest descent, we have
(WV'-Wy,, v'-y,) < g2 (Wy'v) (30)

Apart from the apriori estimate (27), which follows from
(29), (30), (19) and (21), we have the posteriori estimate

. 1
Ix -x I <

-AX]

Y8

which is obtained from the same relations and the
equation

f-Ax, = Wv‘-va
Notice that, from equation (23), we have
q = (n-0)/(n+0) < (3-y)/(6+Y) = p

which emphasizes that the rate of convergence of the new
gradient method is not worse than that of the method of
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steepest descent. Numerical results show that in practice
the new method is far superior than the original steepest
descent. Moreover, the new method outperforms several
conjugate gradient methods for solving systems of linear
equations. This is illustrated in section 5.

4. COMPUTATIONAL SCHEME

In the previous two sections, we presented the new
gradient method. This method may be used to solve
systems of linear algebraic equations as well as linear
integral equations and differential equations. The
computational scheme has some specific features that
depend on the class of problems to be solved. In this
section we give the scheme suitable for the solution of
linear integral equations. Other schemes can by gathered
very easily. The major steps are given below.

Step 1. Specifv a system of linearly independent functions

PO s ) L

Step 2. Construct the matrix

A= {A¢iv¢j}i,j =12,

m
E Py a|ppp(bI p, isfi=k 2% nan
p=1

WwE

I=

-a

where p = {p;};-12 m are the coefficients of
the chosen quadrature formula, and
{alp}l,p=1,2,...,m arc the values of the kernel of the
integral operator A at the sampling points.
Step 3. Invert the matrix A and obtain {Aij'l}i j= 1.2,
Step 4. Find the initial approximation

n
[o] 0,i
X =Eai cbp, p=1,2,..,

i=1

n where

n

m .
422ﬂ$¥p$%,u=Lme
P=

=1

Step 5. Evaluate the following quantities

m m
k Y k-1 & % k
4 =f- 1 Ppip & = 1 Ppaipdy, 12,2, m
P= B
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Z —Ed) EXUE P1S ¢|, p=1,2,...m

i=1 ]:1 1=1

2 k |k A k .k
T, = z:pp(dp —zp) Eppdpdp,
p=1 p=1
k k-1 k k
X =%l 1:k(dp —zp), p=1,2,..,m, k=1,2,..

5. NUMERICAL RESULTS

In this section, we illustrate by some examples the
effectiveness of the proposed gradient method. A
comparison with the steepest descent method [10] as well
as the conjugate gradient method [9] is given. The
computations were carried out on a PC-AT383
microcomputer with a processor running at 33MHz, and
equipped with a 80387 co-processor for speeding up
numerical operations. The notation in the tables below is
as follows: k is the number of iterations to obtain the
approximate solution with the given accuracy €; t is the
time taken to solve the problem in seconds, (if the time is
put in parentheses, this means that computations stopped
at the time indicated.

Example I: The integral equation

1
u(g)
Sle(xnEl

where

2
f(x) = In SRS I
(1+x%)? xt+x%+2

has the exact solution u(x) = 2|x].

The functions {¢;(x)};-1, s are taken to be Chebyshev
polynomials. This problem was solved using the ncw
proposed gradient method, the steepest descent method
and the conjugate gradient method. Simpson’s rule was
used with m base points, £=10°. The discrete norm of
the error vector |le| was used to estimate the results.
Table 1 shows the results of the computation.

d& =f(x)

Example 2. To find the solution of the boundary value
problem

x"-25x+ 20y = 0, x(0) = x(1) = 0.
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Table 1. Results of computations for example 1.

Method m=21 m=41 m=81
lel k CPU time lel k | CPU time flel k CPU time
proposed method |0.02694 3 3.7 0.02417 3 7:1 0.02181 3 18.2
steepest descent 0.03548 | 4699 349.7 0.03206 [4703| 12758 |0.03075 | 4791 (3600)
conjugate gradient |0.03111 4 40.3 0.03005 | 43 98.4 0.02889 | 46 201.4

Table 2. Results of computations for example 2.

Method m n k t lel
25 4 31 25 0.001464
proposed method 50 7 95 13.5 ]0.000519
100 11 167 78.6 |0.000184
25 - 404 356 |0.001473
steepest descent 50 - 1638 302.7 |[0.000532
100 - 6600 | 2610.3 |0.000203
25 - 54 42 |0.001465
conjugate gradient 50 - 142 21.3 | 0.000522
100 - 710 1424 |0.000187

Table 3. Results of the computations for example 3.

Method k t X Xg X16 X4 X35 X430
exact solution - - 23.40000 |[19.20000 |14.40000 |9.60000 |4.80000 |0.20000
proposed method 48 78 12339999 |[19.19999 |14.39999 |9.60001 [4.79999 |0.20018
conjugate gradient | 113 | 221 [23.40001 |19.19999 [14.40002 |9.59999 |4.80000 |0.20022
steepest descent 2400 | (2700) {23.39997 |19.20006 |14.40000 |[9.60004 |4.80000 |0.20033

Using the finite difference method, we obtain the system ¢, = {tbji}j: 12,..m-1, i=12..n
pf linear equations: )
& = 1ifj=GDl+1il 1=@@-1)/m

i- -2x+ i+ 3
&—# - 25‘20” =O7 1= 1129""m—1 =40 OthCrWiSC.
h
X, =X, =0, h= m-1 ) The results are summarized in Table 2.
m

Example 3. Consider the system of linear equations
T’he vector ¢, was taken to be
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m-1

EGljﬁzg’ i=1,2,...,m"1

j=1
where

Gij = i(m-}), isj, fi=m3_ |2i-m|3, m=80, i=1,2,...,m-1

= j(m-i), i 2 j.

The exact solution is x; = -(f,-2f;+f_;)/m. Table 3
shows the results of solving this system. The accuracy is
£=10". The functions ¢’s, i=12,..,15 are Chebyshev
polynomials. We notice here the symmetry of the solution
with respect to x,.

6. CONCLUSION

By introducing a correction element to the steepest
descent type of method for solving systems of linear
equations, the convergence was accelerated dramatically.
It has been shown that the proposed gradient method is
exceptionally superior in terms of numerical stability. A
proof for convergence of the method has been given. The
method is applicable to solve linear integral equations and
differential equations. The proposed acceleration scheme
can be extended to conjugate gradient algorithms. Similar
ideas are now under investigation to accelerate the
convergence of Quasi-Newton methods for minimizing
nonlinear functionals.
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