THE PERIODIC SOLUTION OF CERTAIN HIGHLY NONLINEAR OSCILLATORS

Mohamed Hassan Eid

Department of Engineering Mathematics and Physics, Faculty of Engineering,
Alexandria University, Alexandria, Egypt.

. ABSTRACT

The harmonic balance-perturbation method given by van Dooren [23] for the equation X =
f(x, X, t). The method is illustrated by considering a specific example

is modified to suit the equations X =

f(x, 1), (.=d/dt)

previously studied in [24, 25]. Comparison of ‘the present results and previous ones reveals the effectiveness of

the suggested technique.
1. INTRODUCTION

In a series of trial-blazing papers Urabe [1-4] introduced
a complete criterion for the numerical and the theoretical
study of periodic solutions to certain periodic non-linear
ordinary differential equations. His method made use of
a high order Galerkins approximation together with the
Newton’s iterative procedure for the solution of the
resulting non-linear algebraic equations. The broad
applicability of Urabe’s results especially to applications in
mechanical vibrations such as harmonic and subharmonic
oscillations and combinations tones, has been disseminated
by Bouc [5, 6], Shinohara [7-9], Defilippi and Latil [10],
and by Van Dooren [11-17].

Since it is well known that the Fourier series
representation of the solution to various problems of
practical importance contains a dominant part, Fontenot
and Burrus [18, 19], and Van Dooren [20 - 22] introduced
a modification of Urabe’s Galerkin procedure by taking
into account the advantages of this property. These
methods are essentially based on an appropriate
combination of the harmonic balance method and the
perturbation method. Although these analytical methods
cannot fully complete with Urabe’s complete numerical
method, very good results are obtained. The main
advantages of these analytical methods are: (1) the
determining equations in the subsequent approximations
are solved by a very simple procedure; (2) the order of
smallness for the coefficients of the Galerkins
approximations is predicted; and (3) the effect of the
problem parameters is easily studied.

Van dooren [23] suggested an analytical approximate
method based on finite Chebysheve series and a harmonic
balance perturbation technique to reduce the difficulty in
the algebraic manipulations involved in Urabe’s method.
His method deals with the highly non-linear ordinary
differential equation excluding the first derivatives.

In this present work we modify the method of Van
Dooren [23] to suit the highly non-linear ordinary

differential equations that contain the first derivatives.
Illustrative example is solved and comparisons of the
results with others are given.

2. THE MODIFIED HARMONIC BALANCE
PERTURBATION METHOD

In this section, we describe the application of the
method proposed by Van Dooren [23] to suit the highly
nonlinear ordinary differential equations that contain first
derivatives.

2.1. The First Approximation

Let us consider the general highly nonlinear periodic
differential equation of the form

X + AX + BX = (X, X, t) €Y}

where the dot over a variable indicates differentiation with
respect to time t. The above equation can be written as

L(t) = (X, X, 1) (la)

where
L(H) = X + AX + BX

We consider the class of equation (1) when the right

hand side is a nonlinear polynomial of X, X and
furthermore at t. The dependence on the time t is
sinusoidal with coefficients that cannot be neglected.
The method suggests that the approximate solution X(t)
of equation (1) be represented in the form of the
following finite series.
1

X™(t,€) =a, +a,cost +b;sint +& E (a,cosnt +b sinnt)
S @

Where € is an artificial small parameter that its role will
be clear in due course. The order of approximation 1 will
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depend on the balance of higher harmonics upon
substitution of equation (2) into equation (1).

From the differentiation of equation (2) with respect to
t we get

1
x" (t,e) =b,cost —a;sint +¢ E n(b,cosnt -a sinnt)
i (3.3)
also

1
)"(m(t, €)=-b;sint —a cost - ¢ E nz(bnsinnt +a, cosnt)
a2 (3b)

When ¢ is set equal to zero, the following predominant
expressions result:

X™(t,0) = a,+b;sint+a,cost (4.2)
X™(t,0) = bycost-a,sint (4.b)

The unknown coefficients in expression of equation (2)
are determined by a harmonic balance of the
corresponding coefficients of sin nt and cos nt for n = 0,
: . T

This balance is supplemented by a perturbation
approach. This can seen by applying the above
combination to the following equation.

Ln(te) = f(X" (10, X"(t0), t) ®

This means that in the linear left hand side of equation
(1) the full expression, equation (2) is substituted. While
in the nonlinear right hand side only the predominant part
equations (4.a) and (4.b) are used.

The application of the above technique results in a
system of algebraic equation in the unknown coefficients
b =0, 1,2 i i

These equations are linear except for the leading
coefficients which are determined from a system of non-
linear algebraic equation.

This will be explained in the example at the end of this
section.

2.2. The Second Approximation

Following the outlines of [23], we assume that the first
approximation can be improved by considering higher

approximations. To obtain the second approximation we

set

XY = XLe)reye) ®)
where X™(t,¢) represents the first approximation obtained
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above, and y(t,e) represents the correction. Substituting
equation (6) into equation (1) we get

X™(t,e)+AX™(t,e)+ BX™(t,e) + £y (t,£) + eAy (L,€) +

eBy(t,e) = f(XT+ey, X" +ey, t) )
But from equation (6), it is evident that
X™(t,e)+AX™(t,e)+ BX"(t,e)

= (X"(t,0), X"(t,0), 1) ®
Combination of equations (7) and (8) we get
J(Le) +Ay (Le)+By(te) = e G0 ©)

Where
G(yy,t) = (X" +ey, X" +ey, t)
-£X™(,0), X™(1,0), t) (10)
To obtain the analytical expression for the correction

y(t), we follow exactly the same procedure outlined in the
previous section. We propose to have

Ay
y™(t,e) =C_ +C,cost+d,sint +& E (C,cosnt +d,sinnt)
n=2 (11)
with the leading terms

M(t,0) = C,+C;cost +d,sint
4 (t9 ) 0 1 1 (12)
Again the full expression (11) is substituted in the linear
part of equation (9) and only the leading (predominant)
part is used in the non-linear part of equation (9). The
unknown coefficients can be obtained by a harmonic
balance of coefficients of sin nt and cos nt forn = 0, 1, 2,
o L
Finally the solution in the second approximation is
written as

X(t)=(a,+&£C_,) +(a;+&C;)cost +(b,+ed,)sint

+eE [(a,+eC )cosnt +(b +ed )sinnt] (13)

=2
H'\g\xt‘:‘r approximations can be obtained in exactly similar
fashion.

3. TLLUSTRATIVE EXAMPLE

In this section we consider the following nonline
problem
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X +02X+X> = 03 cos t (14)

that previously solved numerically by Hayashi [24] who
gave also the results for its solution by the perturbation
. method and the harmonic balance method. Bernard [25]
solved equation (14) using a combination of the
orthogonal polynomial series and equivalent linearization
method.

In this section, we solve the equation (14) applying the
modified harmonic balance-perturbation method in section
2. Using series (2), choosing 1=15 the determining
equations in the first approximation are readily found to be

3

% 3 232
=—(_+— a, +—b ) (15)
. 4301 4 1%
-a; =-02b, -(-03+ 3 aéa1 + éaf + Eblzal) (16)
4 4 4
“by=-02a, - 2b, (a; +a_ +b) €Y
4
—4ea2=-0.2(2£)b2—3a0(a12-b12) (18)
4
—4t:b2=0.2(2t:)a2-analb1 (19)
2
By 222
-9eay= —02(3e)b3—7(a1 -3b;) (20)
~9eby =02(3€)ay - ~ b, (32 -b’) 1)
4
" -n’¢a, = 0, -n’eb, = 0, (n = 4,5, ..) (22)

Equation (15) is satisfied by a, = 0, then equations (16)
and (17) are solved numerically using the Newton
Raphson iterative method for the unknowns a; =b,. From
equations (18), (22), the remaining coefficients are
obtained. We get in the first approximation the following
values.

al = - 0.30997 19293 a3
b, = 0.06705241561 b,

- 6729415351 x 10°
5733694702 x 10

[

Hence the first order approximation of the solution
corresponding to (14) is given by

XD(t) = a,cost+b;sint +a4c0s3t + bysin3t )
The results in the second approximation are briefly
reported below:
XO(t) = (a;+€Cy)cost+ (b, + ed,)sint
+(eay+82C;y)cos3t + (eby + £2d,)sin3t; ... (24)
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—eCl+0.2£d1=—fa1bled]—gblzecl—galzeag
E 4 4
3 3.2.. .92
-Za;b;eby+=b;a;——a eC (25)
> i e b
-edl—O.Zecl=~§alblecl-2alzedl-gafeb3
4 4 4
3 3.2 9.3
+-2-a1b1t:a3—zblt:b3—:1-blz:d1 (26)
-962(;3+0.662d3=-6-alb18d1+—3-b128C1
4 4
3.2 3.2 3 2
-Za ea;-—b gay;-—a eC 27
SRE N B e i b
9¢2d,-062Cy=-Sa b eC - 2a’ed,
4 4
“3a%eby-2b7eby + 2bled, 28)
2 2 E
—25&;2C5+e:2d5 = —éalzeag+3albleb3+3blzeag (29)
4 2 4
—25c2d5-eZC5 = —Eafe%—zalbleaféblze% (30)
4 2 E

The numerical values of the coefficients are

C; = -7.291125353 x 10°
d, = 426301733 x10°
C, = -1.096138017 x 10
dy = 1.092014233 x 10
Cs = -1.035704292 x 10°
dg = 245601629 x 10°°

Finally, we obtain the second approximation
XP(t) = -0.3100448cost +6.7095046x10 sint
-6.8390292x10" cos3t + 5.842891x10™sin3t

-1.0357043x10 5 cos5t +2.4560163x10 sinS5t
@31
The process can be easily repeated in order to obtain
higher approximations to any desired accuracy.

4. CONCLUSION AND RESULTS

In order to appreciate the efficiency of the method
outlined in the previous sections, we substitute the solution
obtained in the second approximation (31) into the
equation (14) and calculate the corresponding error for
different values of t then we calculate the average error.
It was found that such error is of the order 1.5x10°%, This
example has been previously studied numerically by
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Hayashi [24] who gave also its solution by the harmonic
method and the perturbation method, the example is also
studied in [25], these four methods in the second
approximation lead to an average error of order 9.9x107,
-2x10'3, -2x10 and 8.3x10 respectively. Hence it can be
argued that the present work gives a simple procedure for
the solution of nonlinear differential equation of the form
(1) that admit periodic solutions.

Further more the implementation of this technique to
the specific example studied here reveals that the resulting
average error is less than the corresponding error due to
other methods and at the same order of approximation we
have more harmonics.
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