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ABSTRACT

This paper presents a mathematical analysis of the projections of a circle in both central and parallel
projections. The parametric equations of a circle as a space curve are derived. The curves (conics) of projections
of this circle in central and parallel projections are represented parametrically by applying the parametric
equations of the circle to the general transformation equations which are derived in [1]. As a result, all types
of these conics are represented by general parametric equations.

INTRODUCTION

The projection of a circle in central and parallel
projections are conic sections. The mathematical
representations of these projections (conics) in some
spacial cases are presented in [2,3,4]. In [2] all types of
these conics (hyperbola, parabola and ellipse) are analysed
mathematically in central projection for the special case
where the picture plane is vertical. In [3] the case where
the conics are only ellipses in central projection is
considered. Also, this case (the conics are only ellipses) is
treated in [4] for both central and parallel projections.

In this paper the general case is considered, namely,
when the picture plane is in general position with respect
to the coordinate system of the object (circle). In this case
the conics which represent the projections of the circle on
this plane are represented parametrically by general
equations which are applicable for both central and
parallel projections. Moreover, these general parametric
equations are proved to be valid for all types of conics.

NOTATIONS

The following notations are referred to Figures (1,2):

0-XYZ rectangular coordinate system of the space
object.

Q(Xg;YgZg) coordinates of the centre Q of the circle
y.

S(Xs,Y,Z)  coordinates of the point of sight S.

o-uv rectangular coordinate system of the
picture plane .

h vertical distance between o and XY-plane.
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d principal distance.

Y Yo Y1 zenith angles of the projecting line, the
normal of 1t and the normal of plane a of
v.

0, azimuth angles of the normal of the plane
o.

¢ angle between the normal of m and the
projecting line SO.

b, angle between a and w.

L,m,n direction cosines of the projecting line SO.

I mn, direction cosines of the normal of .

l;,my,n, direction cosines of the normal of «a.

In central projection there are following relationships
between (X, Y,Z), (Lm,n) h, d and ¢:

X; =1(nd + hcos ) / n cos ¢,
Y, = m (nd + h cos ¢) / n cos ¢, and
Z,=n(nd + hcos ) / ncos ¢.

PARAMETRIC REPRESENTATION OF A CIRCLE

In space a circle  may be defined by its plane a, radius
r and centre Q, Figure (1). Let P be a point on , then its
position on « is determined by an angle t measured from
a horizontal line q passing through Q and lying in «. Let
in Figure (1), (Q;€,n) be a system of cartesian
coordinates lying in «, where the &-axis coincides with q.
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Then the coordinates (&,n) of point P with respect to this
system are &=r cos t, n=r sin t, Then, the coordinates
(X,Y,Z) of P with respect to the system (O;X,Y,Z) are

X = &sin 0 - 1 cos y; cos 6; + X,
Y =& cosB -ncosy;sinB +Y,
Z =nmsiny;+ Zq
or
X = r(sinB;cost-cosy cosB,sint) + X,
Y = -r(cosﬁlcost+cosylsmelsmt)+Y €))
Z = r(smylsmt)+Z

where 0, is the azimuth of the normal of a.
Since 1; =cosB;siny,, m; =sinB;siny, and n,=cosy;, then

= r[m,cost-n,l;sint]/[siny,]+ Xq
= -r[llcost +n;msint]/[siny ]+ Y

0<t<2m } 2
= r[(1-n; )smt]/[smyl]+Z

These equation are a regular parametric representation of
a circle lying in the space, where t is the parameter. The
plane « of this circle is given by

p (X-X) +my (Y-Y) +n(Z-Z)=0  (3)

Figure 1.
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Figure 2.

PARAMETRIC REPRESENTATION OF THE
PROJECTION OF A CIRCLE

According to [1], the coordinates (u,v) of the projection
P, of a space point P(X,Y,Z) Prqcctcd centrally from S
onto the picture plane ® are given by

u = K[a;X+b; Y+c¢; Z]/[ay X+b3Y +c3 Z+d;] }
v = K[a,X+b, Y+¢, Z]/[a; X+by Y+c3 Z+d,]

where a;b;, ¢; (i=1,2,3), d; and K are listed in Tables 1,2
for central and parallel projections respectively.
Substitution from Equations (2) into (4) leads to

u=K[rA;cost + rB;sint + C;]/[rAscost + rBsint + C5] }
©)

v=K][rA,cost + rB,sint + C,] /[rAcost + rBsint + C;]

where A, B,, C; (i=1,2,3) are listed in Table 3.
Equation (5) are the parametric equations of the central
projection . of the circle Y from S into m, where t is the
parameter. To prove that Equations (5) represent a conic
section, one eliminates the parameter t between these
equations, then the result is a second degree equation in
u,v. This equation as well known in analytic geometry
represents a conic section. In this paper another approach
is applied. Let Lu+Mv+N = 0 be the equation of any
arbitrary line in wt, then, by substitution from Equations
(5) into this equation one gets
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Locost + M sint + Ny =0 (6)
where
o = I[K(LA;+MA,)+NA,],
= r[K(LB; +MB,) + NB,],
= [K(LC; +MGC,) +NG;].

Leti in Equatlon (6) tan t/2 = 5 sint = 25/(1+s ), cos t=
(1 s )/(1+s ), hence (N Lo)s +2Ms+(M,+L,) =0, this
is a quadratic equation in s, having two roots. This means
that any arbitrary line in ®© meets the curve {, in two
points. Therefore Y is a conic [5], and in turn Equation
(5) are the parametric equations of a conic section.

o

TYPES OF CONICS IN CENTRAL PROJECTION

As mentioned before, when eliminating the parameter t
from Equations (5) the result is a second degree equation,
and according to the coefficients of this second degree
equation one can deduce the type of the conic ¥ . In this
paper the type of . will be determined directly from
equation (5) as follows. In protective geometry one known
that the type of a conic section _ is determined according
to the points of intersection of y_ with the line at infinity
L. If these points are real distinct, real coincident or
imaginary, then ¥ is respectively a hyperbola, a parabola
or an ellipse. For this reason the homogeneous
coordinates (x,y,z) will be introduced into Equation (5) by
letting u=Kx/z and v = Ky/z where

X =T1Ajcost + rB;sint + C;
y =rA,cost + 1B,sint + C, M
'z =TrAjcost + rB3sint+ (O
provided that
A, B, C
=|A, B, G| #0 ®)
A; B, G

It is to be noted that the point (xy,0) corresponds to a
point at infinity and the locus of points at infinity is the
lme L. Thercfore let in Equatlon (7) z =0, cost = (1-
s )/(1+s )and sint = (2s)/(1+s ). hence

(Q-rA3)s +2(rB3) s + (C5 + rAy) = 0 ®

Thxs is g quadratlc equation its discriminant § = [r B3 -
(C3 -r A3 )] shows that the line L intersects §_ in two
real distinct, real coincident or imaginary points according
respectivelyto 8 > 0,8 = 0or & < 0.

Then, when A # 0, and according to the magnitudes of
& one can decide that the type of y in central projection
are

Hyperbola when 8 >0, ie., r >C3 /(A3 B3§)
Parabola when §=0, i.e, I _C-&/(A (10)
Ellipse  when 8<0, ie., r <C,3 /(A +B3)

Now, the case when A =0 will be considered. Substitutions
from Tables 1 and 3 (for central projection) into
Determinant (8) yields

A = n(1-0>)cos’dl1; (XX ) +my (YY) +0y(Zs-Z )]

In this equation the cases when n=cos$ =0 and n =1 will
be excluded, since these values cause K tends to zero or
mﬁmty Then, A =0 when 1;(X;-X )+m1(Y -Y )+n1(Z-

Z) = 0. This equation shows that A =0 when the plane
a whlch is given by Equation (3), passes through S. In this
case it is evident that ¥ _ becomes a straight line.

A special case arises when I =1;, m =m; and n,=n,,
i.c., when a is parallel to 7. In this case by substituting
from Table 1 into Table 3 (for central projection) one can
prove that A;=-B, and A,=A;=0. Then, Equations (5)
become

K [r(A;/C5) cost + C,/Cy
K [-1(A;/Cy) sint + C)/C5]

These equations are the parametric equations of a circle.

u

v

TYPES OF CONICS IN PARALLEL PROJECTION

Table 3 shows that in parallel projection Ay = By = 0
and C; = 1. Then, Equation (9) becomes £+ 1=0I
is obvious that this equation has two imaginary roots.
Hence, in parallel projection the line L intersects . in
two imaginary points. Therefore, §_ is an ellipse on the
condition that A #0. In this case ¥ _ is given by

u = K (rA; cos t + rB; sint + C;) }

(11

v=K(rAycost + rBysint + C))

To determine the value of A substuting from Tables 2 and
3 (for parallel projection) into Determinant (8) one gets
A =-(1-n, ) cos ¢ cos ¢,. This equauon shows that A =

0 when cbl = n/2 (the case whenn, = 1 and ¢ = =n/2
are excluded for the same reasons which were mentioned
before in the case of central projection). It is evident that
when ¢, = /2 the two planes a and & are perpendicular
and then Y is a straight line. As mentioned before in
central projection, the special case I,=1;, m =m; and
n,=n, causes A; =-B, and B, = A, =0. Then, Equation (11)
become

u = K(rA cost+C;), v = K(-rA;sint+C,)

and this is the parametric equations of a circle.
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Locost + M sint + Ny =0 ©6)
where
L, = r[K(LA,+MA,) +NA,],
Mo = r[K(LB; +MB,) + NB,],
= [K(LC; +MGC,) +NC4].

Let i in Equatlon (6) tan t/2 = 5 sint = 25/(1+s ), cos t=
(1 s )/(1+s ), hence (No o)s +2M_ s+ (M, +L,) =0, this
is a quadratic equation in s, having two roots. This means
that any arbitrary line in ®© meets the curve §, in two
points. Therefore §_ is a conic [5], and in turn Equation
(5) are the parametric equations of a conic section.

TYPES OF CONICS IN CENTRAL PROJECTION

As mentioned before, when eliminating the parameter t
from Equations (5) the result is a second degree equation,
and according to the coefficients of this second degree
equation one can deduce the type of the conic ¥ In this
paper the type of Y. will be determined directly from
equation (5) as follows. In protective geometry one known
that the type of a conic section y is determined according
to the points of intersection of _ with the line at infinity
L. If these points are real distinct, real coincident or
imaginary, then . is respectively a hyperbola, a parabola
or an ellipse. For this reason the homogeneous
coordinates (x,y,z) will be introduced into Equation (5) by
letting u=Kx/z and v = Ky/z where

X =T1Ajcost + 1B;sint + C;
y =rAjcost + 1B,sint + G, @)
7, =rA:,costi»rB:‘,smt+C3
provided that
Al B, Cl
=|1A, B, G| #0 (®)
Aa B3 C3

It is to be noted that the point (x,y,0) corresponds to a
point at infinity and the locus of points at infinity is the
lme Lo Thercfore, let in Equatxon (7) z =0, cost = (1-
s )/(1+s )and sint = (?.s)/(l+s ). hence

(C_,-rA3)s +2(rBy) s + (C3 + 1A3) = 0 ©)]

Thls isa quadrauc equation its discriminant § = [r B3 -
(C3 -r A3 )] shows that the line L intersects y in two
real distinct, real coincident or imaginary points according
respectivelyto 8 > 0,8 = 0or 8 < 0.

Then, when A # 0, and according to the magnitudes of
8 one can decide that the type of Y in central projection
are
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Hyperbola when 8 >0, ie., r >C,3 /(A +B32) }
Parabola when 8=0, i.e, C’Jz / (A (10)
Ellipse  when 8<0, i.e, r <C3 /(A +B3)

Now, the case when A =0 will be considered. Substitutions
from Tables 1 and 3 (for central projection) into
Determinant (8) yields

A= -n(l-nzo)cosztb[ll(xs-xq) +my(Ys-Yo) +ny(Zs-Z )]

In this equation the cases when n=cos$¢=0 and n =1 will
be excluded, since these values cause K tends to zero or
mﬁmty Then, A=0 when ll(Xs-X )+m,(Y-Y )+n1(Z-

) 0. This equation shows that A =0 when the plane
a wlnch is given by Equation (3), passes through S. In this
case it is evident that ¢ becomes a straight line.

A special case arises when I, =1;, m =m; and n,=n,,
i.e.,, when « is parallel to =. In this case by substltutmg
from Table 1 into Table 3 (for central projection) one can
prove that A;=-B, and A,=A;=0. Then, Equations (5)
become

u = K[r(A;/Cy) cost + C;/Cy]
v=K[1(A;/Cy) sint + C/C5]

These equations are the parametric equations of a circle.
TYPES OF CONICS IN PARALLEL PROJECTION

Table 3 shows that in parallel projection Ay = By = 0
and C; = 1. Then, Equation (9) becomes +1=0I
is obvious that this equation has two imaginary roots.
Hence, in parallel projection the line L intersects . in
two imaginary points. Therefore, Y is an ellipse on the
condition that A #0. In this case ¥ is given by

u = K (rA; cost + rB; sint + C,)
L

v=K(rAyost + rB;sint + C))

To determine the value of A substuting from Tables 2 and
3 (for parallcl projection) into Determinant (8) one gets
A =-(1-n, %) cos ¢ cos ¢,. This equahon shows that A =

0 when 4)1 = n/2 (the case when n, = 1 and ¢ = /2
are excluded for the same reasons which were mentioned
before in the case of central projection). It is evident that
when ¢; = /2 the two planes & and ® are perpendicular
and then Y is a straight line. As mentioned before in
central projection, the special case I,=1;, m =m; and
n,=n, causes A; =-B, and B;=A,=0. Then, Equation (11)
become

= K(rAjcost+Cy), v = K(-rA;sint+GC,)

and this is the parametric equations of a circle.
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CONCLUSIONS [4] Ming H. Land., "An Algorithm and Basic Program
for Generating Ellipses in Perspective Projection with
The mathematical analysis which is presented in this the Microcomputer”, Proceeding ICEGDG, Vienna
paper results in: 1988, Vol. 1, pp 311-316.
(1) Equations (5) are a general parametric [S] E.A. Maxwell, Plane Protective  Geometry,
. representation of all types of conic sections. Cambridge University Press, 1963.
(2) Relations (10) can be used to predict the type of the
conic which is the projection . of a circle. Table 1. Perspective Projection.
(3) In central projection; the projection Y of ¥ is either
a hyperbola, a parabola, an ellipse, a circle or a Parallel Angular Oblique
straight line. a m m (mll%+ mm-, +nn, mg)
(4) In parallel projection; . is either an ellipse, a circle b =1 3 (1o +1m%o + nngl)
or a straight line. Sl 4 -0, (Im,, - mlo)
(5) The latter two results agree with the known graphical 3 9 nlo nl
. S . s by n nm, nm,,
constructions of the projections of a circle in central e on'd (il +mmy)
and parallel projections. :2 0 nl, nlomo
(6) Tables 1, 2 and 3 are used to calculate the bz n nm, nm,
coefficients of Equations (5) and (11) for parallel, " 0 0 . nng
angular and oblique perspective as well as orthogonal ds '(“‘:: mh) | (nd+h cos ) ~(nd+h cos @)
and oblique parallel projections. A computer K At /e 9 nd/sin v, cos ¢
program can be written to carry out these
calculations besides plotting point by point the
projection . in both perspective and parallel
projcctigns_ Table 2. Parallel Pr ojection.
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