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~STRAcr

A matrix geometric solution to the M[x}/PH/l is demonstrated. The essential step is.the calculation of a matrix
R the unique non-negative solution of a quadratic matrix equation. :rhough the mam ~tructure of the Markov
h. . f M/G/l type the assumption of bounded group arnvals allows handling the problem, aftercamlSO , ·1· fh

aggregation of states, as a structured Markov chain of GI/M/l ~ and thus matrix geometriC so utlon 0 t e
queue \ength distribution ~ adm~\b\e.. Exvuc\t e.~ua\ions axe de.nve<1 tOt the t\\eaI\ m. ~U~ U\I
queue \ength. and the mean group waiting time. Finally, we discuss the virtual waiting time distribution of a
group. The basic result of this paper is that structured Markov chains of M/G/l type with finite baIidwidth can
be equivalently studied as GI/M/1 type chains after a suitable aggregation of states is done. The main
disadvantage is the large dimension of matrices encountered in the computation.

IffRODUcrION

Customers arrive in groups to a single service facility
:cording to a Poisson process with rate A. Consecutive
oup sizes are independent, bounded by N and have the
Immon probability density {ail, 1 ~ i ~ N. The service
cilityserves one customer at a time and the service time
;tribution is a PH-type (see this paper). This queue is
noted as the M[x]jPH/l.

he M[x]/PH/1 queue has been treated many times in
, literature. Neuts [1] developed a recursive technique
compute the steady state queue length probabilities

lS~der~g both the discrete and continuous phase type
tnbuhons. Chaudhury and Templeton [2] considered the

~]/EK/1 queue using a generating function approach.
n Hoorn [3] considered the M[x]/G/1 queue using the
enerative approach and obtained steady state
ressions for the mean queue length probability using a
lfsive technique in the case of phase type distributions.

approach in this paper seems to be the most
ising as the group distribution may well be state

,ndent. Altiok [4] considered the M[x]/C /1 queue. K
g a recurSlve technique, however his work can be
idered as a special case of the work done by Neuts
Elsayed [5] used a generating function-algorithmic
oach for the M[x]/CK/1 and obtained the steady state
le length distribution for the important special cases

~, EJ,K (mixture of Erlang distributions) and the

deterministic distribution as special cases. Steady state
probabilities are computed recursively exploiting the
obtained generating function. Also mean system size for
the cases considered are obtained. An algorithm for the
general Coxian distribution is also proposed.

We should note that the queue M[x}/PH/1 is a special

~ of the queue with versatile Markovian point process
mput and general service analyzed by Ramaswami [6].

In this work, we consider the M[x]/PH/1 using matrix­
geometric solution approach Neuts [7]. The assumption of
Group arrivals which are independent, upper bounded by
N and consecutive arrivals have the common probability
density, is realistic in many cases such as the degree of
parallelism in a computer system, the maximum number

of packets that a message can be split into in a switching
node, ... etc. This assumption renders the solution of this

queu~ as an M/PH/1-like queue. The special properties
of this well behaved queue can be exploited to allow a
semi-explicit solution for this queuing system. Although

the. structure ~f this queue is mainly of the M/G/l type
which has a different approach for analysis ( see Neuts

[8]),.the ~~uty of the matrix geometric solution provides
senu-expliclt analytic expressions for many of the system
performance measures in terms of a computable (in most
cases) matrix R.
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PHASE TYPE DISTRIBUTION REPRESENTATION

A phase type distribution F(.) with representation (~,T)
is the distribution of time till absorption in the (K + 1)
state Markov process with generator

T = , ro =

T~e continuous probability distribution F(.) is itself given
by

F(x) = 1 - ~ exp(Tx) ~, for x > = 0,

The nth moment of the time till absorption in this CfMC
is given by

~o = -~ (TI)o ~

The well known generalized Erlang and Coxian
distribution of order K are special cases of continuous
time phase distribution, the representation of these known
types are respectively:

and initial probability vector (~, "K + 1)' without loss of
generality we can assume that "K+I =0 throughout this
work and that ~ is a true probability (row) vector. This
distribution corresponds to K exponential stages with
general feed forward and feed backward connections
between the stages. Furthermore, the parameter of each
of the exponential stages is not equal in general. The
square matrix T is non-singular, has negative diagonal
elements, non-negative off-diagonal elements and satisfies

T ~ + IO= Q.,

where ~ is a K-column vector with all components equal
to one. Throughout this work ~ is assumed to be a vector
with all its components equal to one with an appropriate
dimension to match the case under consideration.

We further assume that the matrix T + IO.~ is
irreducible. The representation (~, T) is then said to be
irreducible.

N

81::::Ei8j•
jzl

The assumption of bounded group size can be made
realistic for distributions that are not upper bounded by

calculating the integer N-1 for which 8N_I < e, where e
is small (typically in the range 1e-3 to 1e-6) and then
setting

To allow a matrix geometric solution for this queuing
system, we consider group arrivals which are independent,
upper bounded by N and consecutive arrivals have the
common probability density 8i, 1 < = i < = N, the
stationary probability that the arriving group is of size i.
The mean group size is denoted by 81 is assumed to be
finite and is easily calculated from

and ~ = (1 0 ... 0)

A complete discussion on phase type probability
distributions can be found in Neuts [9] and Neuts [7].

THE M[x}IPHl1 QUEUE

The underlying Markov chain of the M[x)/PHl1 queue
can be either a continuous or a discrete time Markov

chain depending on the service distribution representation
whether continuous or discrete phase type distribution or
density respectively. In this work we consider only the
continuous parameter phase distribution, which has, as
special cases, Erlang, Generalized Erlang and Coxian
distributions.

The state space of this markov process is

S = {O,(n,j): n > = 1, 1 < = j < = K},

the state 0 corresponds to the empty system and (nj) is
the state that there are n units in the queuing system and
that the unit currently receiving service is in fictitious stage
J.

o

o
T

and ~ = (10 ... 0) with ~j > = 0, 1 < = j < = K, and

N-l

8N ::::1 - E 8j•
jzl
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Let Po be the stationary probability of the empty system,
and P(n,j) be the stationary probability that our Markov

process is in state (nj). For n > 0, defme rn' a row
vector of dimension K, to be (P(n,l) P(n,2) ... P(n,K».

. We can write the stationary (steady state) Chapman
Kolmogrov equations for the MIx)/PH/1 with phase
representation (~, T) as follows:

APo = rlIO (1)

AalPo~ +rl(T-AI)+r2IO.~ = 0, (2)

For 1 < = n < = N,

0-1

AaDPO~+AEaD_iPi+PD(T-H)+pD+lre.~ =0 (3)
i=1

and fmally for n > N

Defme the following quantities:

M=NxK,

i!.o = (Yl~ Y2~ ... YN~)

which is an M-row vector,

Q

which is an M-column vector

(7)

(8)

(9)

D-l

A E aD_iPi+PD(T-AI)+PD+lre.~ =0 (4)
i=ll-N

Let

Yi = A ai' 1 < = i < = N (5)

Then the infmitesimal generator Q for this Markov
process can be written as follows:

012

0

-A
Yl~Y2~

1

reT-AI Yl1

2

QTO.~T-AI

3

Q0TO~

9

=

N-lNN+l

YNI000 0

YN-l I

YNI00 0

A =

YN-zIyN-1IYNI0 0(10)0

Y1I

YzIY31 YNI

N-l NN+lN+2

YN-l/}

YN/}QQQ

YN-zI

YN-l1YNI00

YN_31

YN-zIYN-llynl0

YN...•I

YN-31YN-zIYN-ll

(6)T-AI

Yl1yzIyJ

r\~
T-Uy11yzI

0

re~T-UY 11
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which is an upper Hessenberg matrix of dimension M, and

o 0 . . . .. 0

Az = (12)

which is a lower diagonal matrix either on the block or
element level.

!l = (El f2 ..... fN)

!i = (E(i-l)xN+l f(i-l)xN+2 fiN) (15)

Clearly, !j, i > = 1 is an M-row vector. The Markov
chain resulting from this aggregation of states can be
described for each level i by the pair (Dj), where n e {
(i-1)*N + 1, (i-1)*N +2, ..., i*N }, 1 < = j < = K The set
(nJ) so constructed will be called level i.

The structured Markov chain given by equation (13) can
be solved using the standard matrix-geometric method
developed mainly by Neuts as well as G. Latouche, D.
Lucantoni, V. Ramaswami and other contributors. The
main results, theorems, algorithms, numerical experience,
and many applications can be found in Neuts [7]. Here,
we briefly mention the main results for sake of
completeness, and the interested reader should consult the
reference cited at the end of this paper and the huge
bibliography in Neuts [8].

The following two theorems are proved in Neuts [7].

Theorem 1: Consider a positive recurrent, continuous time
Markov chain with infInitesimal generator Q of the form

YN_I1

YN-21

(11)ro.~

T-AIyll

0

TO~T-AI

r.l!
o

oo

o 0

o 0

o

T-AIyllY21

'fl.~
T-AIyll

0

'fl.~T-AI
A=

00

which is a singular square matrix of dimension M, and is

highly sparse as only one block of size N x N is generally
nonzero.

After defIning the above quantities, and by aggregation
of each of N states (ij) starting from i= 1, into a single
state the matrix Q can be rewritten in a higWystructured
form as follows:

BoAo000

BI

AlAo00

B2

A2AlAo0

Q

=B3A3AzAlAo (16)

-A~o
000

~2

AlAo00

0

A2AlAo0

Q

00AzAlAo (13)

the elements of Q are M x M matrices. The off diagonal
elements of Q are non-negative, the diagonal elements are
negative and

K

E Av~ + BK~ = 0, K ~ 0,
vzO

Let the corresponding probability vector ~ of that
continuous time Markov chain be partitioned into the
vectors xO' !l' !2' ... where

then the steady state probability distribution C!o' !l' !2,
....) of this system is matrix geometric in the sense that
! n =!n-l R, where R is an M x M matrix whose spectral
radius is less than one and which is the minimum non­

negative solution of the nonlinear matrix equation

(14)
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Theorem 2: Defme the matrix B[R] = L R KBK, then
KzO

the irreducible Markov process with infinitesimal generator

given by (16) is positive recurrent if and only if R has all

its eigenvalues inside the unit disk and if there exists a

positive vector ! 0 such that ! 0 B[R] = Q., moreover the
tationary probability vector :?f satisfying:?f Q = Q., and :?f

= 1 is given by:?f = (!o,!a R, !o R, ...) where !o is
the solution of

!o B[R] = Q., and !o [1-RrI ~ = 1

Applying the above theorems to our M[x)IPHl1 queue,

we notice that the infinitesimal generator of our queue is

a simpler version of the one defmed above, as only the

matrices Ao' AI' and A2 exist and all other A's are equal
to zero. This generator is of the Quasi Birth-Death

Process type which exhibit more structured properties than
the general case. There is another difference in our queue

in that the probability !o is not a vector of dimension M,
but is a scalar quantity. We form the steady state

probability distribution for this system as follows:

The Equilibrium equations for this QBD process are

exploit the result developed by Gillenet and Latouche to

find the matrix R explicitly.

The matrix A2 can be written as i!.2' ~ where i!.2 is
defined in (8) and

~ = (0 0 ... ~), (22)

clearly ~ ~ = 1. Then the following theorem can be

directly applied to fmd the matrix R explicitly and to

relate the vector! l' to !o' In all single server queuing
systems with infinite waiting room the probability of the

empty system is 1-p, where p is the queue utilization.

Theorem 3: (Theorem 2 page 152 F. Gillent and G.

Latouche [10])

If the matrix A2 = i!.2'~' and ~ ~ = 1, and if the Markov
chain given by (13) is ergodic, then the matrix R is given

by

R = -Ao z-!, (23)

-A Xa + ! 1 i!.2 = 0, Le., Xa = ! 1 i!.2 I A

Xa i!.o + !I Al + !2 A2 = Q.

!i-I Aa + !i Al + !i+I A2 = Q.

(17)

(18)

(19)

where

Z = Al + Ao ~.~

Moreover the vector ! satisfies the relation

Z-I Ri-I r .!i = -!o i!.2 lor I ~ 1,

where

Xa=l-p

(24)

(25)

(26)

Then the steady state solution of this QBD process is

given by

where the MxM matrix R is the minimal non-negative

solution of the quadratic matrix equation
2

Aa + R Al + R A2 = 0 (21)

this equation can be written in the following form

R = Aa [-AlrI + R2 A2 [-AlrI

rhe above equation can be used to evaluate R iteratively,
~ follows. Let

R(o) = Ao [-AIr!, and

R(n+I) = Ao [-AlrI + R~n) A2 [-AIr!, n ~ 0

The above iterative scheme is in general rapidly

convergent because of the special properties of the matrix
R.

!n = !n-I R, n > 1, (20)

where p the queue utilization, is equal Ae~I' where e is

the mean group size and ~ 1 is the mean service time of
the service distribution given by _~ TI ~.

In the following sections we obtain analytic closed form

expressions for the mean system size and the mean queue

size, in terms of the ! 1 vector and the matrix R.

PERFORMANCE MEASURES OF THE M[x]/PHl1

Mean System Size of the M[x) /PHl1

Theorem 4: The mean system size L is given by

! 1 (I - RrI [ N (I - RrI R ~ + l.J ] (27)

The second moment of the mean system size L(2) is given

by

! 1(I-RrI[N(I-Rr\N[2(I-RrIR + I]R~ + 2Rl.J) + l.J.l.J]

(28)

Because of the special structure of the matrix A2 we can where
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"0 = Po, !i = er (i-l)K+1 r(i-l)K+2 ... ri0

The mean system size is

proof:

The steady state solution vector ~ is related to the
steady state system size probability r by the following
relation.

II = (Yl Y2 ... YNl

which is an M-column vector and

(.. .)Yi = 1 1 ... 1

~ a k-row vector.

(29)

(30)
The mean queue length

Theorem 5: The mean queue length L is given by

!1(I-Rr1 [N(I-RrlR~ + y ] (31)

where

Y = (yo Yl ... YN-l) (32)

where Yi' 0 < = i < = N is defined br (30), and the
second moment of the queue length Lq(2 is given by

!1(I-Rrl[N(I-R)-I(N[2(I-RrIR +I]R~+2RY) + y.y] (33)

L :: (L nPD)~l'
D=l

where ~ is a K-column vector with all entries equal to
one. The vectors r n can not be expressed explicitly in
terms of the matrix R, and !}. Defme the vector II as
given by (29) which is an M-column vector. Then L can be
written in the form

L :: L;!lRi-l«i-l)N~ +lJ)
i=l

= !+(t.iRl)~ +(t.RiH1]
:: ;!1[N(I -R)-2R~ + (I -R)+(}]

:: ;!l(I-R)-I[N(I-R)-IR~ +V]

proof:

The mean queue length is given by
- -

Lq=(L(n-l)PD)~l and L~::(L(n-lrp.)~1
D=l D=l

and then proceeding as done theorem 4 after using the
vector Y instead of II in each step of the proof, we obtain
the above results.

The mean group waiting time

The virtual waiting time of the group is the time spent
in the queue by a group arriving at an arbitrary point till
the first customer in the group is admitted to the service
facility. The time the first customer has to wait may be
viewed as the time till absorption in the Markov chain
with generator

We can also compute the second moment of the queue
length as follows:

o 0 0

1 !2 D

o 0

o 0

L(2) :: (Ln2PD)~
n=l

L(2):: L;!IRi-l(i-l)N~ +lJ)·«i-l)N~ +lJ)
i=l

where • is the shur or entry wise product of vectors.

L(2) =!I [N2(~ j2 RI) ~ +2N(~ iR l)t} +(~ R I) t} • t} ]

2 0 ~ D 0 0

30 O~DOO

where the matrix D is obtained by replacing .t in At by
zero. if a group arrives it will find the system in state (Dj),
where

(i-1)*N + 1 < = n < = i*N and 1 < = j < = K, with
probability! i = ! 1 Ri-I, the time till absorption in this
Markov chain will have an LST given by [(sl_D)i-lA2li-l(sI_
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Dr\!., hence the virtual waiting time of a group W1(t) will
have an LST given by.

w1(s) = Xo + E~Il[(sI-O)-1 ~]1l-1 (sI-Drl~211-1

post-multiplying the last equation by ~ ~

observing that Az = !!.z'~' then

w1(s) = hO + E~Il[(SI-O)-1 ~]Il ~11-1

1, and

(34)

T-1- e-1

and

w(-Dr1 ~ = N ~1

Proof:

(38)

Making elementary row operations on this matrix, we
can fInd the inverse in the following form

D =

o

o

o

o

o

o

o

T 0

ro.~ T

o

T-1 0

_T-l~ T-1

o 0

T 0

ro.~ T

o

o

T

ro.~
o

o

D =

= -5£im E ~11[(sI-D)-I(n-l)(w(sl-Drll!2)1l-2.
.~o11-1

.
w1(s) = Xo + E~11(sI-D)-1~2[W(sI-Drl!2t-l (35)11-1

w _ dw I
1- ds .-0

and fInally

~oting that

Wm (W(sl-D)-1!2) = (W(sl-D)-1!2) = (W~) = 1.~o

Upon differentiating the above equation the expected
value for the mean virtual waiting time of a group can be
found

and that

5£im( -W(sI-Or2!2) =( -W( -Drl~2) = (-W( _D)-I~).~o

o

-T-1et> T-1
(39)

then

w1 = E~Il [(n-l )(W( _D)-I~)~ + (_D)-I~] (36)
11=1

The quantities (-Drl~ and ~(-Drl~ are now expressed

in terms of the queue parameters in the following theorem

where

et> = IO.!!11

then D-l~ takes the form

T-1 ~1

-T-tAe +T-t e'1'-1 -1

(40)

where ~1 is the mean service rate of the server, y IS

iefmed by (32) and

Theorem 6:

(-Drl~ = ~1 Y + !! (37)
T-1(_A'\N-t T-t( A'\N-2 T -I A T-1-...J ~I + - •••J ~1 +••. - •••~I + ~I

(41)

but
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This expression may be further simplified. We post­

multiply equation (47) by ~ and note that D~ +A2~ =0,then we obtain yOA~ = (I-Rrl~, upon substituting in
(SO), we obtain

W1(x) = 1 - !14>(x)A2~' for x > = 0 (51)

The waiting time distribution can thus be obtained by

evaluating the matrix yO and then solving the matrix­

differential equation (48).

~y a similar argument as in Neuts [12] we can obtain

results for the asymptotic exponentiality (see Neuts [14])

of the waiting time distribution.

NUMERICAL EXAMPLES

The algorithmic approach presented in this paper was

successfully programmed using the 'C' language and
applied to many MIx)/PH/1 queues and the results

completely agree with cases that can be analyzed using

generating functions (See EI-Sayed [5]).

To demonstrate the usefulness of these algorithm we

present below results for three queuing systems under

various inputs.

The ftrst queue is a Coxian of order two with the

following representation:

T = 1-4 2.81 -re = [1.21-3' - 3' C! = (1 0)

The second queue is a mixture of Erlang of order 3 and

Erlang of order 5 with the representation

-55 0

-5

5 0

T =

-53 to=2, ~= (lOO 0 0), -
-5

5 0

-5

5

density is varied as shown in Table 1.

Note that the truncated geometric density with

parameter P and upper bound N is constructed as follows:

P(i) = P qi-l, i = 1,2, ...,N-1

P(N) = qN-l, where q = 1 -p

The quantities obtained in each case are the mean queue

length Lq and variance Var(Lq)' the mean waiting time of
the ftrst customer in a group W1, the mean waiting time
of an arbitrary customer within the arriving group W, the

propagation constant of the tail of the probability
distribution of the system population 't defined as

(see Neuts [14]), and the probability distribution of the

system population.

CONCLUSION

A number of closed form expressions has been obtained

for the MIx)/PH/1 queue.

The main conclusion which deserves further study is that

structured Markov chains of M/G/1 type which has ftnite

bandwidth can be studied as chains of GI/M/1 type. The

latter has a matrix-geometric solution. The main step is

aggregation of states and construction of larger matrices

which render the process as a QBD process. The main

disadvantage is the large dimension of matrices

encountered. By careful programming and specially

written algorithms for handling sparse matrices, storage

requirements can be reduced and speed of calculations can
be achieved.

Further study of the equivalence of these two classes of
Markov chains should be studied and verifted.

The third queue is a general phase type with the following

representation

T =

-5 0 1.5
1.8 -3 0
o 2.7 -4
1.1 0 1.7

2

1.2 to =
o ' -

-5

1.5

o

1.3

2.2

= (.4 .25 .2 .15)

Table 1. Group size densities.

""put ~ Density of • l~
A

8(0 0 0 0 0 1) conant bIIIch De • 8836

B

10(0.1 0.1 ... 0.1) 5.538.5

C

10tnJr>c8Ied georMlric -. P-0.124 5.9185748.82322

0
20(0 0 0.3 0.4 0.2 0 0 ... 0 0.1) 5.554.1

The utilization is kept constant at 0.9 and the group size
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Input
QueueP(n<lO)P(n<2O)P(n<30)P(n<4O)P(n<5O)

A

10.32020.50190.83480.73220.8036

B

10.29830.48120.58780.88470.7588

C

10.27720.43040.55210.84780.7231

0

10.28480.38630.493580.58090.8535

IInput
IQueuel~IVar(l,)lw,IWI'!

A

129.3861031.~714.57315.7820.969449

B

133.8851382.539318.74818.1980.973559

C

137.8351717.343118.58720.3190.97824

0

148.8502740.142422.91725.0530.981179

Input
QueueP(n<10)P(n<2O)P(n<3O)P(n < 40)P(n < 50)

A

20.33080.51890.86410.75120.8211

B

20.30440.47490.80400.7014O.n48

C

20.28370.44180.58810.88270.7378

0

20.27030.39470.50390.59230.6852

IInput IQueuel~1Var(l,)lw'IwI'I
A

227.736914.1942323.78825.8880.9875n

B

232.2361247.015127.5883O.0e60.972170

C

238.1831585.878830.88233.7710.975122

0

244.9982553.074138.28741.9980.980507

IInput lQueuel~IVar(l,)lw'lwI'I
A

330.79581137.509027.948130.1490.970895

B

336.2981504.008531.91134.5540.974842

C

339.2441852.414035.39038.4200.9n118

0
349.0602llO5.574843.158947.0500.981719

IInput IQueueIP(n<lO)IP(n<2O)IP(n < 30)Ip(n<4O)IP(n<5O)I
A

30.31220.48840.81930.71870.7891

B

30.29010.45030.57480.87110.7458

C

30.27210.4213O.~0.63570.7110

0
30.28040.37850.48520.571580.8438
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