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MM /PH/1is demonstrated. The essential step is the calcula.ho;l :]:f ah;n;;r;
i i i in structure of the
i i trix equation. Though the main s
i non-negative solution of a quadratic ma . . s, "G
?;;T i‘;m;lfuid/Gfl glype, the assumption of bounded gro;:p arrwa.l:sl la;low; a?ﬁitzgm:;ci?uﬁon s
i hain of GI/M/1 type and thus
tion of states, as a structured Markov ¢ \ ‘
aguir:fz::m distribution is admissible. Explicit equations are derived for }hn me.m.\ .syslt:m h‘f@‘f‘ \‘m: mean
:ucue length, and the mean group waiting time. Finally, we discuss the virtual waiting time distribution of a
group. The basic result of this paper is that structured Markov chains of M/G /1 type with finite bardwidth can

be equivalently studied as GI/M/1 type chains after a suitable aggregation of states is dome. The main
disadvantage is the large dimension of matrices encountered in the computation.

A matrix geometric solution to the

STRODUCTION

Customers arrive in groups to a single service facility
cording to a Poisson process with rate 4. Consecutive
oup sizes are independent, bounded by N and have the
mmon probability density {6}, 1 < i < N. The service
tility serves one customer at a time and the service time
itribution is a PH-type (see this paper). This queue is
noted as the MM /PH/1.

"he MM /PH/1 queue has been treated many times in
t literature. Neuts [1] developed a recursive technique
compute the steady state queue length probabilities
isidering both the discrete and continuous phase type
tributions. Chaudhury and Templeton [2] considered the
"]fEK/I queue using a generating function approach.
1 Hoorn [3] considered the M™/G /1 queue using the
enerative approach and obtained steady state
ressions for the mean queue length probability using a
irsive technique in the case of phase type distributions.

approach in this paper seems to be the most
nising as the group distribution ma?r well be state
:ndent. Altiok [4] considered the M"]/CK/l queue
g a recursive technique, however his work can be
idered as a special case of the work done by Neuts
Elsayed [5] used a generating function-algorithmic
oach for the M /Cy /1 and obtained the steady state
€ length distribution for the important special cases
> E;x (mixture of Erlang distributions) and the
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deterministic distribution as special cases. Steady state
probabilities are computed recursively exploiting the
obtained generating function. Also mean system size for
the cases considered are obtained. An algorithm for the
general Coxian distribution is also proposed.

We should note that the queue M /PH/1 is a special
case of the queue with versatile Markovian point process
input and general service analyzed by Ramaswami [6].

In this work, we consider the M™/PH/1 using matrix-
geometric solution approach Neuts [7]. The assumption of
Group arrivals which are independent, upper bounded by
N and consecutive arrivals have the common probability
density, is realistic in many cases such as the degree of
parallelism in a computer system, the maximum number
of packets that a message can be split into in a switching
node,... etc. This assumption renders the solution of this
queue as an M/PH/1-like queue. The special properties
of this well behaved queue can be exploited to allow a
semi-explicit solution for this queuing system. Although
the structure of this queue is mainly of the M/G/1 type
which has a different approach for analysis ( see Neuts
[8]), the beauty of the matrix geometric solution provides
semi-explicit analytic expressions for many of the system
performance measures in terms of a computable (in most
cases) matrix R.
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PHASE TYPE DISTRIBUTION REPRESENTATION
A phase type distribution F(.) with representation (e ,T)
is the distribution of time till absorption in the (K+1)
state Markov process with generator
¢ g
Q=
00

and initial probability vector (&, @y, ), without loss of
generality we can assume that @y, ;=0 throughout this
work and that @ is a true probability (row) vector. This
distribution corresponds to K exponential stages with
general feed forward and feed backward connections
between the stages. Furthermore, the parameter of each
of the exponential stages is not equal in general. The
square matrix T is non-singular, has negative diagonal
elements, non-negative off-diagonal elements and satisfies

Te +T' =0

iy

where € is a K-column vector with all components equal
to one. Throughout this work e is assumed to be a vector
with all its components equal to one with an appropriate
dimension to match the case under consideration.

We further assume that the matrix T + Io.g_ is
irreducible. The representation (&, T) is then said to be
irreducible.

The continuous probability distribution F(.) is itself given
by

F(x) = 1- a exp(Tx) ¢, for x >= 0,

The n™ moment of the time till absorption in this CTMC
is given by

o= (T)'e

The well known generalized Erlang and Coxian
distribution of order K are special cases of continuous
time phase distribution, the representation of these known
types are respectively:

B Wy 0
T - “H2 K2 T - 0
Py Bk

and @ = (10..0) with j; >= 0, 1 <= j <= K, and

B 4B b, ¥,

“H, LK b,

T = 2 ¥, T - 2 Ky
“Bg B

and @ = (10 ...0)

A complete discussion on phase type probability
distributions can be found in Neuts [9] and Neuts [7].

THE M™/PH/1 QUEUE

The underlying Markov chain of the M /PH/1 queue
can be either a continuous or a discrete time Markov
chain depending on the service distribution representation
whether continuous or discrete phase type distribution or
density respectively. In this work we consider only the
continuous parameter phase distribution, which has, as
special cases, Erlang, Generalized Erlang and Coxian
distributions.

The state space of this markov process is

S={0mj):n>=11<=j<=K},

the state O corresponds to the empty system and (n,j) is
the state that there are n units in the queuing system and
that the unit currently receiving service is in fictitious stage
j-

To allow a matrix geometric solution for this queuing
system, we consider group arrivals which are independent,
upper bounded by N and consecutive arrivals have the
common probability density 8,, 1 <= i <= N, the
stationary probability that the arriving group is of size i
The mean group size is denoted by 6, is assumed to be
finite and is easily calculated from

N
8, =Y i6,.
i=1
The assumption of bounded group size can be made
realistic for distributions that are not upper bounded by
calculating the integer N-1 for which 0y ; < e, where €
is small (typically in the range le-3 to le-6) and then

setting
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Let P, be the stationary probability of the empty system,
and P(n,j) be the stationary probability that our Markov
process is in state (nj). For n > 0, define P, a row
vector of dimension K, to be (P(n,1) P(n,2) ... P(n,K)).

. We can write the stationary (steady state) Chapman
Kolmogrov equations for the M™/PH/1 with phase
representation (¢, T) as follows:

lPc'n s BIIO M
A6,P,a +P(T-AD)+P,T%a = 0, @
Forl1 <=n <= N,

n-1

AP o +1Y 6, P, +P (T-A)+P, T°2 =0 (3)
i=1
and finally for n > N
A zf 0, ,P,+P (T-AI)+P, T’q¢ =0 0)
i=n-N
Let
Y;=A0,1<=i<=N (5)

Then the infinitesimal generator Q for this Markov
process can be written as follows:

Foal 2
0o |2 v,¢ 7Y,¢
£ 1T T-a1 ¢[
g T T-Al
o R R o

9-_-

N-1
N
N+1

Define the following quantities:
M= NxK,

a, = (v12 Y22 - YNQ)
which is an M-row vector,

0

which is an M-column vector

A= 12l Yyl %l O ....

4% S 7% G 79

Yl 0 I -
Y%il Hd 0 0 ....

™
®

©)

(10)

N-1 N7 -Nal Nakis .- =

- Yna%® YN 0 0 0

Ynad Tnal Yl D 0 o
Ynd Ynd Yl Y1 O ...
Yicd T Ttk Tapagl = voss

T-Al ¥d Bk ) e cusi
T8 T3 'qRagl .. ...
0" Py Ryt L L
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which is a lower diagonal matrix either on the block or
element level.

T-Al v,I v, Yn-y!
T’e T-Al y,I Yig)
S " 110 .. e AR
A= 0 o : : (11)
T’.¢ T-AI v,I
0o 0 o 0 T°¢ T-aAl

which is an upper Hessenberg matrix of dimension M, and

i © PSRt
2§ BPIRESRRT 0

A, =| (12)
B s 0

which is a singular square matrix of dimension M, and is
highly sparse as only one block of size N x N is generally
nonzero.

After defining the above quantities, and by aggregation
of each of N states (i,j) starting from i=1, into a single
state the matrix Q can be rewritten in a highly structured
form as follows:

(13)

Let the corresponding probability vector X of that
continuous time Markov chain be partitioned into the
vectors X, X, X 5, ... where

% =P, (14)

x; =8, Py ... Py

Xi = i+ Bz BN (15)

Clearly, x;, i >= 1 is an M-row vector. The Markov
chain resulting from this aggregation of states can be
described for each level i by the pair (n,j), where n € {
(-1)*N+1, (i-1)*N+2, ..., i*N }, 1 <= j <= K. The set
(n,j) so constructed will be called level i.

The structured Markov chain given by equation (13) can
be solved using the standard matrix-geometric method
developed mainly by Neuts as well as G. Latouche, D.
Lucantoni, V. Ramaswami and other contributors. The
main results, theorems, algorithms, numerical experience,
and many applications can be found in Neuts [7]. Here,
we briefly mention the main results for sake of
completeness, and the interested reader should consult the
reference cited at the end of this paper and the huge
bibliography in Neuts [8].

The following two theorems are proved in Neuts [7].

Theorem I: Consider a positive recurrent, continuous time
Markov chain with infinitesimal generator Q of the form

B,A, 0 0 O
B, A, A, 0 0
B, A; A, A, .0
Q=18 Ky Koy A ons a (16)

the elements of Q are M x M matrices. The off diagonal
elements of Q are non-negative, the diagonal elements are
negative and

K
Y A +Bye =0, K20,
v=0

then the steady state probability distribution (x , X, X,
....) of this system is matrix geometric in the sense that
Xn=Xn.1R, where R is an M x M matrix whose spectral
radius is less than one and which is the minimum non-
negative solution of the nonlinear matrix equation
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Theorem 2: Define the matrix B[R] = E RKBK, then
K=0

the irreducible Markov process with infinitesimal generator
given by (16) is positive recurrent if and only if R has all
its cigenvalues inside the unit disk and if there exists a
positive vector X ; such that x ;| B[R] = 0, moreover the
stationary probability vector X satisfying X Q = 0, and X
e =lisgivenby X = (x5, X, R, X, R, ..) where x, is
the solution of

X, B[R] = 0,and x, [I-R]' ¢ =1

Applying the above theorems to our M /PH/1 queue,
we notice that the infinitesimal generator of our queue is
a simpler version of the one defined above, as only the
matrices A, A;, and A, exist and all other A’s are equal
to zero. This generator is of the Quasi Birth-Death
Process type which exhibit more structured properties than
the general case. There is another difference in our queue
in that the probability x , is not a vector of dimension M,
but is a scalar quantity. We form the steady state
probability distribution for this system as follows:

The Equilibrium equations for this QBD process are

Ax, +X;a,=0ie,x;,=x;2,/2 17
¥olot X1A; + X34, =0 (18)
Xi1Ao t XA + X1 A =0 (19)

Then the steady state solution of this QBD process is
given by
Xn = Xna1 R,n>1, (20)

where the MxM matrix R is the minimal non-negative
solution of the quadratic matrix equation

A,+RA; +R*A, =0 1)
this equation can be written in the following form
-1 2 -1
R = A, [[A]" + R A [-A]

The above equation can be used to evaluate R iteratively,
is follows. Let

R(O) - AO ['Al]-l, and

Ra+1) = Ao A" + R%n) Ay AL n20

The above iterative scheme is in general rapidly
tonvergent because of the special properties of the matrix
R.

Because of the special structure of the matrix A, we can
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exploit the result developed by Gillenet and Latouche to
find the matrix R explicitly.

The matrix A, can be written as a2, w where a, is
defined in (8) and

w=(00..a), ()

clearly w ¢ = 1. Then the following theorem can be
directly applied to find the matrix R explicitly and to
relate the vector x ;, to x . In all single server queuing
systems with infinite waiting room the probability of the
empty system is 1-p, where p is the queue utilization.

Theorem 3. (Theorem 2 page 152 F. Gillent and G.
Latouche [10])

If the matrix A, = a,.w,and w ¢ = 1, and if the Markov
chain given by (13) is ergodic, then the matrix R is given
by

R WA 2P ()
where

Z=A +A ew (24)
Moreover the vector x satisfies the relation

_{i=-§o§_22‘1RH foriz>1, (25)
where

X, =1-p (26)

where p the queue utilization, is equal AOu,, where 0 is
the mean group size and W, is the mean service time of
the service distribution given by -& T ¢.

In the following sections we obtain analytic closed form
expressions for the mean system size and the mean queue
size, in terms of the x ; vector and the matrix R.

PERFORMANCE MEASURES OF THE MM /PH/1
Mean System Size of the M™ /PH/1
Theorem 4: The mean system size L is given by
x;I-R7'[NAI-R'Re + U] @

The second moment of the mean system size L s given

by
x1(I-R) '[N-R) | (N[2(I-R) 'R +T]Rg +2RU) +U*U]
(28)

where
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U=(@ Y2 - 1N (29)
which is an M-column vector and
vi=Gi . (30)

is a k-row vector.

proof:

The steady state solution vector X is related to the
steady state system size probability P by the following
relation.

X = Py X; = Bayk+1 Bapksz -~ Piw)
The mean system size is

L = nP)e,,
n=1

where ¢ is a K-column vector with all entries equal to
one. The vectors P can not be expressed explicitly in
terms of the matrix R, and x ;. Define the vector U as
given by (29) which is an M-column vector. Then L can be
written in the form

™M

L = ¥ x,R"((i-1)Ne + 1)

-
—

= 5, |N(TiRY)e + (L RHU
i=1 i=1

= x,[N(I-R)?Re +(I-R)"'U]

= x,(I-R)'[N(I-R)'Re +U]

We can also compute the second moment of the queue
length as follows:

L® - (z-: n’P)e
n=1

L® = 3 x,R"(i-1)Ng +U)  ((i-1)Ne +U)
i=1

where ¢ is the shur or entry wise product of vectors.
L® -5, | NA(F iR ¢+ 2N(TiRHY (TR Y+ Y
i i0 i-0

=x5,[N*[2(I-R)®R?+(I-R)?R]¢ +2N(I-R) ?RY(I-R) " JoU)]
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=x,(I-R)'[N(I-R)'(N[2(I-R) 'R +I]R¢+2R ) + UU]

The mean queue length
Theorem 5: The mean queue length L is given by

x,(-R)" [NOI-R)'Re + Y ] (31)
where
Y = @o ¥y - ¥na) (32)

where v, 0 <= i <= N is defined by (30), and the

second moment of the queue length Lq(2 is given by

5, (I-R)[N(I-R) (N[2(I-R) 'R +T]Rg +2RY) + Y+Y]  (33)

proof.

The mean queue length is given by

Ly=(Y (n-1)P,)¢, and LY = (¥ (n-17P)e,
a=1

n=1

and then proceeding as done theorem 4 after using the
vector Y instead of U in each step of the proof, we obtain
the above results.

The mean group waiting time

The virtual waiting time of the group is the time spent
in the queue by a group arriving at an arbitrary point till
the first customer in the group is admitted to the service
facility. The time the first customer has to wait may be
viewed as the time till absorption in the Markov chain
with generator

010 -B- & Wins i i
20 B8NS
20 R B 00 5 il
3 0 K% DO O ...

.....

where the matrix D is obtained by replacing A in A, by
zero. if a group arrives it will find the system in state (n,j),
where

(-1)*N + 1 <=n<=i*Nand 1 <= j <= K, with
probability x; = x; R, the time till absorption in this
Markov chain will have an LST given by [(sI-D)"lAz]"l(sI-
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D)'lg_ , hence the virtual waiting time of a group W, (t) will
have an LST given by

w,® =3, + 33, [(1-D)A,]"" (d1-D),

post-multiplying the last equation by w ¢ = 1, and
observing that A, = a,.w, then

wi(8) =R, + 3 X5,[(sI-D)'A, "¢ (34)

a=1

and finally

w6 =+ 33 2 (sSI-D) 3, [w(sI-D) '3, (35)

Upon differentiating the above equation the expected
value for the mean virtual waiting time of a group can be
found

dw
[

i

s=0

=-&im ) x,[(sI-D)"'(n-1)(w(sI-D)'a,)"2.

-0 pn=1
(-w(sI-D)?3,) - (sI-D) *(w(sI-D)"3,)"'1a,
Noting that
<im (w(sI-D)™'3,) = (w(sI-D)'a,) = (we) = 1

s-0
and that

im(-w(sI-D)?a,) =(-w(-D)"a,) =(-w(-D)'¢)
s-0

then
W, = Y x,[(n-1)(w(-D)'e)e + (-D)'e] (36)
n=1

The quantities (-D)'lg and g(-D)'Ig are now expressed
in terms of the queue parameters in the following theorem

Theorem 6:
(D)'e =p Y +h (37)

vhere W, is the mean service rate of the server, Y is
lefined by (32) and
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_T-lgl
p | T

-'1"191
and
w(D)'e = Ny, (38)
Proof:

i B

P& T 0.

0 R 0
D - 0

f Rl
0 0 s T

Making elementary row operations on this matrix, we
can find the inverse in the following form

T 0 B G e 0N
-T'¢ T gy wil, 0
T-1¢* -T1¢ ; Gt
D =
i . : 0
T—l(_¢)N-I T-l(—d))N_z _T*l¢ T-l
(39)
where
¢ =TaT! (40)
then D'lg takes the form
T e,
'Tv1¢§1+T-1§1
Dl¢=
T e+ T (-9 %, +.. -T e, +T ¢,
(41)
but
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This expression may be further simplified. We post-
'multiply equation (47) by ¢ and note that De +A,¢ =0,

then we obtain Azg_=(l-R)'1g , upon substituting in
(50), we obtain
Wi(x) = 1-x,4(X)Ae, forx >=0 (51)

The waiting time distribution can thus be obtained by
‘evaluating the matrix V? and then solving the matrix-
differential equation (48).

By a similar argument as in Neuts [12] we can obtain
results for the asymptotic exponentiality (see Neuts [14])
of the waiting time distribution.

NUMERICAL EXAMPLES

The algorithmic approach presented in this paper was
successfully programmed using the 'C’ language and
applied to many M™/PH/1 queues and the results
completely agree with cases that can be analyzed using
generating functions (See El-Sayed [5]).

| To demonstrate the usefulness of these algorithm we
present below results for three queuing systems under
various inputs.

. The first queue is a Coxian of order two with the
following representation:

T , ¢ =(1 0)

-4 2.3'

1.2
T =
-3 3

The second queue is a mixture of Erlang of order 3 and

Erlang of order 5 with the representation

-5 5 0
-5 5

T-= =53 A sl

-3 35
-5

,a =(10000)

th © N O

The third queue is a general phase type with the following
representation

S50 15 2 1.5
18 -3 012 0
- ,T0 = , @ = (4 .25.2.15)
0 27 4 0 13
R 0017 <8 22

The utilization is kept constant at 0.9 and the group size
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density is varied as shown in Table 1.

Note that the truncated geometric density with
parameter P and upper bound N is constructed as follows:

PG) = pq,i=12.,N1
P(N) = qN‘l, where q =1 -p

The quantities obtained in each case are the mean queue
length Ly and variance Var(Lq), the mean waiting time of
the first customer in a group W,, the mean waiting time
of an arbitrary customer within the arriving group W, the
propagation constant of the tail of the probability
distribution of the system population t defined as

P
Lim 21
n-= P
(see Neuts [14]), and the probability distribution of the
system population.

CONCLUSION

A number of closed form expressions has been obtained
for the M /PH/1 queue.

The main conclusion which deserves further study is that
structured Markov chains of M/G/1 type which has finite
bandwidth can be studied as chains of GI/M/1 type. The
latter has a matrix-geometric solution. The main step is
aggregation of states and construction of larger matrices
which render the process as a QBD process. The main
disadvantage is the large dimension of matrices
encountered. By careful programming and specially
written algorithms for handling sparse matrices, storage
requirements can be reduced and speed of calculations can
be achieved.

Further study of the equivalence of these two classes of
Markov chains should be studied and verified.

Table 1. Group size densities.

Input [N | Density of & L] 8
A |6 |(00D0O0O 1) constant batch size = 8 |6 6
B Jw0j©1 01..01) 55 38.5
C |10 |truncated geometric with P=0.124 5.91857 | 48.62322
D |J2|0003040200..00.1) 55 54.1
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