GRAPHICAL METHOD FOR SYNTHESIZING LINKAGE MECHANISMS TO GENERATE FUNCTIONS OF TWO VARIABLES

Ahmed Hassan Metwally El-Sherif ${ }^{*}$
Department of Engineering Mathematics and Physics, Faculty of Engineering, Beirut Arab University, Lebanon.

ABSTRACT

The paper presents a graphical method for synthesizing plane linkage mechanisms with two rotating inputs and one rotating output. The mechanisms are used to generate functions of two independent variables. The method is based on constructing circles passing through three points, and permits the mechanisms to satisfy six arbitrarily selected precision positions. Note; A precision position is a configuration of the system for which the values of the variables of the generated function coincide with those of the function which is to be synthesized.

NOMENCLATURE

Figure (1) shows the linkage mechanism and the letters for the designation of links and points. The following are definitions of symbols.

Figure 1.

x,y	the two input variables
z	the output variable
$\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$	the desired function
$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$	values of the input variables x
$\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}$	values of the input variables \boldsymbol{y}
$\mathrm{z}_{11}, \mathrm{z}_{12}, \ldots, \mathrm{z}_{33}$	values of the output variable such that $\mathrm{z}_{12}=\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$
$\Delta \mathrm{x}, \Delta \mathrm{y}, \Delta \mathrm{z}$	ranges of x, y and z.
$\theta_{1}, \theta_{2}, \theta_{3}$	input angles corresponding to $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$
$\phi_{1}, \phi_{2}, \phi_{3}$	input angles corresponding to y_{1}, y_{2}, y_{3}.
$\Psi_{11}, \Psi_{12}, \ldots, \Psi_{33}$	output angles corresponding
$\Delta \theta, \Delta \phi, \Delta \psi$	$\begin{aligned} & \mathrm{z}_{11}, \mathrm{z}_{12}, \ldots, \mathrm{z}_{33} \\ & \text { angular ranges of } \theta, \phi \text { and } \psi \end{aligned}$
$\mathrm{R}_{x}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}$	scale factors of x, y, z
S_{x}, S_{y}, S_{z}	scale of x, y, z.

INTRODUCTION

Linkage mechanisms which mechanize functions of two variables have numerous applications. Typical examples include robotic components, automatic components and analog computer components. The synthesis problem of these mechanisms has been the subject of many investigations [1-5]. Papers [1] and [3] have presented analytical methods to synthesis 7 -link mechanism with rotational inputs and output. In [2] Mruthyunijaya developed a graphical method to synthesis 7-link mechanism with siding inputs and output. Ramaiyan and others [4] proposed a graphical procedure for synthesizing

[^0]problem is treated by synthesizing, graphically, three function generator mechanisms of one variable and an adder mechanism. When these three mechanisms are join together by the adder, the resultant mechanism performs as a function generator of two variables. Each mechanism of the three mechanisms consists of 6 links besides the adder which consists of 7 links. So the resultant mechanism of [5] contains many links and occupies large space.
In this paper the adder mechanism which is developed in [5] for addition only is resynthesized graphically to generate functions of two variables in certain ranges of the independent variables. The only restrictions are that the functions in the ranges under consideration are bounded, single valued and continuous.

THE LINKAGE MECHANISM AND ITS PERFORMANCE

The linkage adder mechanism of [5] is shown in Figure (1). It has three fixed pivots $\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{b}}$ and O_{c}, three rotating links $\mathrm{AO}_{\mathrm{a}}, \mathrm{BO}_{\mathrm{b}}$ and CO_{a}, and three floating links AP, BP and $C P$. Links AO_{a} and BO_{b} are the input links corresponding to the variables x and y . Link CO_{c} is the output link corresponding to the z variable. This mechanism is required to be synthesized to generate the function

$$
\begin{equation*}
z=f(x, y) \tag{1}
\end{equation*}
$$

within the ranges $\Delta x=x_{3}-x_{1}, \Delta y=y_{3}-y_{1}$ and $\Delta z=z_{33}$ z_{11}. Where $\mathrm{x}_{1}, \mathrm{y}_{1}$ and z_{11} are the starting values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and x_{3}, y_{3} and z_{33} are their final values.
The independent variables x, y are represented mechanically by the angular rotations θ, ϕ of links AO_{a} and BO_{b}, while the dependent variable z is displayed by the angular rotation ψ of like CO_{c}. The angles θ, ϕ and ψ are measured anticlockwise from a fixed cartesian coordinate system (u,v) as shown in Figure (1). The relations between $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and θ, ϕ, ψ are assumed to be linear and in the forms

$$
\begin{align*}
& \mathrm{x}=\mathrm{k}_{\mathrm{x}}\left(\theta-\theta_{1}\right)+\mathrm{x}_{1} \tag{2}\\
& \mathrm{x}=\mathrm{k}_{\mathrm{y}}\left(\phi-\phi_{1}\right)+\mathrm{y}_{1} \tag{3}\\
& \mathrm{z}=\mathrm{k}_{\mathrm{z}}\left(\psi-\psi_{1}\right)+\mathrm{z}_{1} \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{x}}=\Delta \mathrm{x} / \Delta \theta, \mathrm{k}_{\mathrm{y}}=\Delta \mathrm{y} / \Delta \phi, \mathrm{k}_{\mathrm{z}}=\Delta \mathrm{z} / \Delta \psi, \Delta \theta=\theta_{3}-\theta_{1}, \\
& \Delta \phi=\phi_{3}-\phi_{1}, \text { and } \Delta \psi=\Psi_{33}-\Psi_{11} .
\end{aligned}
$$

The mechanism performs as follows: when the links AO_{a} and BO_{b} rotate through two angles, say θ_{2} and ϕ_{3}, link CO_{c} will rotate through the angle ψ_{23}. The four points A, B, C and P will take the positions $\mathrm{A}_{2}, \mathrm{~B}_{3}, \mathrm{C}_{23}$ and P_{23}. The three positions $\mathrm{A}_{2}, \mathrm{~B}_{3}$ and C_{23} indicate on $\mathrm{S}_{\mathrm{x}}, \mathrm{S}_{\mathrm{y}}$ and S_{z} to the values x_{2}, y_{3} and z_{23} of x, y and z . The values x_{2}, y_{3}, z_{23} and their corresponding angles $\theta_{2}, \phi_{3}, \psi_{23}$ must satisfy Equations (2), (3) and (4), and in the same time the value z_{23} must be equal to $\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{z}_{3}\right)$.
It is to be noted that, for a given value of y there are many positions of P corresponding to the values of x . For example, if $y=y_{2}$ and $x=x_{i}(i=1,2,3)$, then P has three positions $\mathrm{P}_{12}, \mathrm{P}_{22}, \mathrm{P}_{32}$. In this case B_{2} is the centre of a circle passes through the points $\mathrm{P}_{12}, \mathrm{P}_{22}$ and P_{32} with BP as radius. Also if $\mathrm{y}=\mathrm{y}_{3}$ and $\mathrm{x}=\mathrm{x}_{\mathrm{i}}(\mathrm{i}=1,3)$, then P has two positions P_{13} and P_{33}, and the locus of B_{3} is the perpendicular lisector of line $P_{13} P_{33}$. Moreover, if $y=y_{1}$ and $x=x_{2}$, then P has one position P_{21}, and the locus of B_{1} is a circle with P_{21} as centre and BP as radius.

GRAPHICAL SYNTHESIS PROCEDURE

To synthesize the mechanism of Figure (1) to generate Function (1), let in this function $y=y_{i}(i=1,2,3)$. Then Function (1) can be expressed as three functions of one variable x , thus

$$
\mathrm{z}=\mathrm{f}\left(\mathrm{x}, \mathrm{y}_{\mathrm{i}}\right) \quad \mathrm{i}=1,2,3
$$

These three functions are plotted as three curves as shown in Figure (2).

Figure 2.
ese curves six design points are chosen such that; ats ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{11}$) and ($\mathrm{x}_{3}, \mathrm{y}_{1}, \mathrm{z}_{31}$) on the curve ree points $\left(x_{1}, y_{2}, z_{12}\right),\left(x_{2}, y_{2}, z_{22}\right)$ and $\left(x_{3}, y_{2}, z_{32}\right)$ urve $y=y_{2}$, and one point (x_{2}, y_{3}, z_{23}) on the curve o insure the linearity of S_{y} scale it is convenient $=y_{2}-y_{1}$. The graphical procedure for the synthesize nechanism is as follows:
locations of O_{a} and O_{c}, the lengths of links AO_{a}, CO_{c} and CP , the angles θ_{1} and ψ_{11} and the scale ors k_{x} and k_{z} are chosen. Points A_{1} and C_{11} are ted according to the values θ_{1} and ψ_{11}.
angles θ_{2} and θ_{3} are calculated by substituting x_{2} x_{3} in Equation (2). Then, according to θ_{2} and θ_{3}, ats A_{2} and A_{3} are located on an arc of a circle of ter O_{a} and radius AO_{a}.
substituting $\mathrm{z}_{11}, \mathrm{z}_{31}, \mathrm{z}_{12}, \mathrm{z}_{22}, \mathrm{z}_{32}$ and z_{23} into uation (4), the angles $\psi_{11}, \Psi_{13}, \psi_{12}, \Psi_{22}, \Psi_{32}$ and ψ_{23} obtained. According to these angles points $\mathrm{c}_{11}, \mathrm{c}_{31}$, c_{22}, and c_{32} are located on an arc of a circle of tre O_{c} and radius CO_{c}.
ints $\mathrm{P}_{11}, \mathrm{P}_{31}, \mathrm{P}_{12}, \mathrm{P}_{22}, \mathrm{P}_{32}$ and P_{23} are located. For mple, point P_{21} is located as the intersection of a cular arc of radius CP and centre C_{21} and a circular of radius AP and centre A_{2} as shown in Figure (3). ints B_{2} is located as the centre of a circle passing ough the points $\mathrm{P}_{12}, \mathrm{P}_{22}$ and P_{32}. The length of the dius of this circle is the length of the link BP, as own in Figure (4).
int B_{1} is located on the perpendicular lisector of line ${ }_{1} \mathrm{P}_{13}$ a distance BP from P_{11} and P_{31}. These are two sitions of B_{1}, the right one is the centre of the circle aich passes through P_{11} and P_{31} and its curvature in e same direction as the circle which passes through ${ }_{12}, \mathrm{P}_{22}$ and P_{32}.
nce $y_{3}-y_{2}=y_{2}-y_{1}$ then the arc distance from B_{3} to B_{2} equal to the arc distance from B_{2} to B_{1}. Thus point 3 is located as the intersection of a circular arc about ${ }_{23}$ of radius BP and a circle arc about B_{2} of radius ${ }_{1} \mathrm{~B}_{2}$. There are two positions of B_{3}.
oint O_{b} and the length of the link BO_{b} are found as te centre and radius of a circle passing through B_{1}, ${ }_{2}$ and B_{3}. Thus, the synthesis is completed and angle ${ }_{1} \mathrm{OB}_{3}$ is $\Delta \psi$.

ULTS OF AN EXAMPLE PROBLEM

e results of applying the graphical procedure to the tion $z=x^{2} y^{1.3}$ for $1 \leq x \leq 1.4$ and $1 \leq y \leq 2$ are $u_{y}=-2.15$, $-2.67, \mathrm{v}_{\mathrm{z}}=15.65, \mathrm{AO}_{\mathrm{a}}=5, \mathrm{BO}_{\mathrm{b}}=15.6, \mathrm{CO}_{\mathrm{c}}=4.8$, $=8.7, \mathrm{BP}=9.77, \mathrm{CP}=9.2, \theta_{1}=48^{\circ}, \phi_{1}=90^{\circ}$, $=218.5^{\circ}, \Delta \theta=44^{\circ}, \Delta \psi=14.6^{\circ}, \Delta \psi=68^{\circ}, \mathrm{k}_{\mathrm{x}}=.0091$,
$k_{y}=-.0685$ and $k_{z}=-.0563$. Figure (5) shows the desired and the generated functions. The design points are not points of zero error due to drawing inaccuracies.

Figure 3.

Figure 4.

CONCLUSION

Represented in this paper a graphical method of synthesize a linkage mechanism to generate functions of two variables. Although this method gives some errors in between the desired and generated functions, but it is fast in producing answers and it gives general illustration, so that ranges and proportions of lengths are constant in view. Moreover, a large number of alternative mechanisms can be obtained by the use of this method, so that the best mechanism among these can be selected on the basis of additional criteria like space and the errors in the generated function. Furthermore, this graphical method can be expressed analytically in a manner suitable for computer programming to obtain mechanisms that have minimum errors in their output. This is the subject of a paper under preparation by the author.

Figure 5.

REFERENCES

[1] Philip, R.E. and Freudensten, F., "Synthesis of TwoDegree of Freedom Linkages", J. Mechanism. Vol. 1, pp. 9-21, 1966.
[2] Mruthunjaya, T.S., "Synthesis of Plane Linkages to Generate Functions of Two Variables Using Point Position Reduction-II. sliding Inputs and Outputs", Mechanism and Machine Theory, Vol. 7, pp. 399-405, 1972.
[3] Kohli, D. and Soni, A.H., "Synthesis od Seven-Link Mechanisms", Journal of Engineering for Industry. Trans. ASME. Series B, Vol. 95, pp 533-540, May 1973.
[4] Ramaiyan, G., Lakshminarayana, K. and Narayanamurth, R.G., "Nine-Linke Plane Mechanisms for Two-Variable Function Generation-II Synthesis", Mechanism and Machine Theory. Vol. 11, pp. 193199, 1976.
[5] El Sherif, Ahmed H.M. "Design of Plane Linkage to Generate Function of Two Variables", Ph.D. Thesis, Faculty of Eng., Alex. Univ. 1983.

[^0]: On leave from the Faculty of Engineering, Alexandria University, Egypt.

