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ABSTRACT

The dynamics of pipes conveying incompressible fluid, where the pipe is supported on equally-spaced elastic
supports which exert both transverse and rotational restraints to the pipe motion has been investigated. The
wave approach, which relies mainly on the notion of the propagation constant, is followed to investigate the case
of steady flow. The effect of the flow velocity, the fluid pressure, the fluid/pipe mass ratio, the rotational
stiffness and the transverse stiffness on the natural frequencies are examined.

NOMENCLATURE

El Flexural rigidity of the pipe.

K, non-dimensional transverse stiffness of the support.

K. non-dimensional rotational stiffness of the support.

I Length of one span of the pipe.

m; Fluid mass per unit length

m, Pipe mass per unit length.

M, Applied bending moment at the left end.

M. Applied bending moment at the right end.

R, Receptance matrix at the extreme left end.

Rg Receptance matrix at the extreme right end.

R. Receptance matrix at point 'i’ due to a unit applied
load at point ’j’

R; Characteristic wave receptance matrix for the
incident wave.

T Tension in the pipe walls.

t  Time.

u  Non-dimensional flow velocity.

v Flow velocity.

V, Applied shear force at the left end.

V. Applied shear force at the right end.

xy Axial and transverse coordinates.

Greek Letters

a. Displacement at point ’i’ due to a unit force at point
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B Fluid-pipe mass ratio.

ﬂij Displacement at point i’ due to a unit moment at
point ’j’

I' Non-dimensional pressure.

Y Rotation at point ’i* due to a unit force at point ’j’

n  Non-dimensional transverse coordinate.

8. Rotation at point ’i’ due to a unit moment at point
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Wave number.

Propagation constant.

Propagation constant of the incident wave.
Propagation constant of the reflected wave.
Non-dimensional fluid pressure.
Non-dimensional axial coordinate.
Non-dimensional time.

Rotation coordinate at the end of a pipe-span.
Generalized coordinates.

Non-dimensional circular frequency.
Circular frequency.
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INTRODUCTION

A great surge of attention has been paid in recent years
to the lateral vibrations of pipes conveying fluid as a
branch of the wide area of flow induced vibrations. despite
the flow induced vibrations are usually considered a
secondary design parameter, a theory for the dynamics of
clastic pipes carrying flowing fluid is of considerable
interest.

In practice, the dynamical behaviour of such system is of
considerable importance for the oscillations which have
been observed in above ground oil pipelines, pump-
discharge lines, various elements of high performance
launch vehicle, missiles, reactor components such as fuel
pins and monitoring and control rods, heat exchanger tube
arrays and piping system in power generating plants and
chemical and petrochemical industries.

As reported by Paidoussis and Issid [1], Marcel
Brillouin was the first to investigate the self excited
oscillations of the free end of a rubber. pipe in 1985. They
reported also that Bourrieres studied the dynamics of
flexible pipes conveying fluid. He examined the oscillatory
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instability of cantilevered pipes conveying fluid both
theoretically and experimentally. Ashley and Haviland, [2],
reactivated the interest in the study of dynamics of elastic
pipes conveying fluid in connection with the vibration
problems of the trans-arabian pipeline.

Housner [3] derived the equation of motion for a pipe
conveying fluid with simply supported ends, while Long [4]
studied the case of cantilevered pipes.

A study by Stein and Torbiner [5] was mainly concerned
with infinitely long pipes conveying fluid. Paidoussis and
Denise [6,7] studied the dynamics of very thin elastic pipes
conveying fluid by applying thin-shell theory.

A derivation of the equations of motion of an initially
stressed Timoshenko tubular beam subjected to a tensile
follower load using Hamilton’s principle was found by
Laithier and Paidoussis [8]. On the other hand Tiny and
Hosseinipour [9] extended a structural impedance
approach for the dynamics of pipe structures conveying
fluid flow.

The dynamic and stability of short tubes was examined
by Paidoussis et al. [10]. They used Timoshenko’s beam
theory for the tube and a three dimensional fluid
mechanical model for the fluid flow.

The objective of this study is to investigate the problem
of multi-supported uniform pipes conveying incompressible
steady fluid flow. The supports are considered elastic with
both rotational and transverse stiffnesses.

MATHEMATICAL FORMULATION

The general equations of motion, of one span of a pipe,
shown in Figure (1), are derived using the simple beam
theory neglecting both shear deformation and rotary
inertia, and given in non-dimensional from as follows.
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The assumption of steady flow imposes the condition
that the pressure flow velocity constant which yields:

(v-I) = constant 6]

Substituting equation (3) into equation (2) gives:

4 2
H+(u2+v—r)ﬁ+2uﬁ_é_zl+a_n =0 4
a! 3k? 9ot 31?2

which governs lateral vibration of a pipe with steady flow.

L o1

Figure 1. Pipe supports and coordinate system.
ANALYSIS OF THE PROBLEM

The problem may be analyzed by considering the wave
approach which relies on an important physical quantity
called "the propagation constant”. This constant i
estimated using the receptance functions which are
obtained by solving the partial differential equation of
motion along with the appropriate boundary condition.

ESTIMATION OF THE RECEPTANCES

The end receptances are found by solving equation (4)
by the substitution of the following harmonic solution:

n(E 1) = (&) ©

then equation (4) has been reduced to,

+(ui+v-T) 821; +i2u603—2- Q=0 (©
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The solution of equation (6) is given by,

4
nE) = Y A, ermé 0
m=1

Substituting equation (7) into equation (6) gives,
A @i+u-DA%2upQr-Q% = 0 ®)

Equation (8) is the characteristic equation which if solved
gives four values for the wave number "A" corresponding
to each value of the frequency of motion. The values of
the arbitrary constants, A, are determined using the
boundary conditions at each end of the pipe segment,
Figure (2). The boundary conditions are obtained by
considering two infinitesimally short slices at the right and
left ends of the pipe segment, Figure (3), and balancing
both forces and moments on these slices. These boundary
conditions are found to be:

k
v|=[7” n(0) =n (0) =0
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n
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n"(1) = | 2| @) +V,
| 29

Kr r ”
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Figure 2. Porces and moments applied on the pipe
segment.
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Figure 3. Forces and moments on both left and right
slices of the pipe segment.

Substituting equation (7) into equation (9) and
rearranging, the resulting equations in a matrix form are
given as

[L] {A} = {c} (10)

where the elements of the "L" matrix are functions of A
(m = 1, 2, 3 and 4) and the transverse and rotation
stiffness at both ends of the pipe segment. The column
vector, {A} represents the unknowns to be evaluated
according to the constant right hand vector in equation
(10) and the column vector {c} takes one of the following
forms:

{c} = {1,00,0}7,{0,1,0,03,{0,0,1,0} or {0,0,0,1}T (11)

where the superscript T, denotes the transpose of the
vector. The above four values of the column vector, {c},
represent respectively a unit applied shear force at the left
end, a unit applied shear force at the right end, a unit
applied moment at the left end and a unit applied moment
at the right end.

Solving the system of simultaneous equations (10), with
the constant vectors in equation (11), gives four column
vectors for the arbitrary constant A . Each column may
be used to have the solution of the differential equation
(6) under the corresponding applied unit force or moment.
These columns are given as:

Am,j"[am,j] where m=1234, and j=1234.

Using these vectors, the receptance functions are
estimated as follows:
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It should bé® noted that this procedure is capable of
estimating the receptance functions for either symmetric
intermediate spans or the extreme bounding spans with
different values of stiffness.

DETERMINATION OF THE
CONSTANT

PROPAGATION

To evaluate the propagation constant associated with
each wave travelling along an infinitely long pipe resting
on equally spaced elastic supports, consider the system
shown in Figure (4-a), which constitutes a block
representation of the infinite pipe. In this figure each
element is coupled through two lines which represent the
two coupling coordinates between each adjacent elements,
Figure (4-b). Acting at these coordinates are shear forces
and bending moments from the adjacent elements.

=k E E b Jinsiad
(a)
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- k ()
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‘ (b)

Figure 4. (a) Block representation of an infinite pipe.
(b) Single element of the system with the sign
convention of the coupling coordinates.

The coordinates and forces are related through the
receptance matrix, obtained in the previous section as
follows:

q, R, R,
q,

er Rn

Fl
Fr

(13)

f

where,

i ‘\1 '\; :
[q,] =[ ] [q,] =[ ] i
P, P, )

] {
(R ] - ay By e [“n B 1
' [Yu Oy LR Y., 9, ‘
[R ] ’a'l Brl [R ] , Bn
it Lle etl : e B Y Bn
vl vr
[F] = M, and [F ] = M,

When a characteristic wave travels through the system of
identical elements with a propagation constant W, the
coordinate and the force vectors at the right hand side o
the element are related to the corresponding vectors a
the left side by [10].

{a,} = ¢{q) (14

{F;}

-4 {F)} (15

Substituting equations (14) and (15) into equation (13
and rearranging, we get:

[Ry + R, -el R, -e¥ R {F} =0 (16

For non-trivial solution of the above equation, th
following condition must be satisfied,

|Ry + R, -e#R;, -e*¥R, | =0 (17

Since the receptances are functions of the frequency c
motion, equation (17), which is a fourth order algebrai
equation, gives four values for the propagation constar
corresponding to each frequency. For each value of th
propagation constant, there is an eigenvector, {f;} and
characteristic wave receptance, Ry, given by [10]:

R = [R, - L R (18
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THE NATURAL FREQUENCIES OF A MULTI-SPAN
PIPE:

Being disturbed at any point within any span of the
infinite pipe model, four waves are excited to travel to the
left and the right of the location of the disturbance.
However, the presence of the two boundaries, A and B as
shown in Figure (5) causes these waves to be reflected.

1 2 3 n-2 n-1 n

E[Je [ s'

Figure 5. Block representation of a multi-span pipe.

The waves travelling from one end are reflected back
upon reaching the other end so on. The reflection of any
wave depends upon the properties of the boundary which
are sufficiently represented by a receptance matrix, R, or
Rg. These matrices may be determined following the same
procedure indicated previously. In order to estimate the
natural frequencies of the n-span pipe, the compatibility of
forces and displacements at each extreme boundary is
assured. Suppose just one characteristic wave travels from
left to right through the pipe at a given frequency. This is
the incident wave, subscripted I, having the propagation
constant W, the force vector at the right end (F;) and the
displacement vector (qy;). This wave is the one which
would be present if the pipe system was extended infinitely
to the right. The normalized force vector, (fy),
corresponding to this characteristic wave, is related to a
generalized wave coordinate Y as follows:

{Fu} = {fir} ¥; (19)

Upon multiplied by the characteristic wave receptance,
this normalized force vector yield a normalized
displacement vector given by,

{Su} = [Ry] {fy;} (20)
Analogous to equation (19), it may be stated that,
{an} = {Su} ¥; (21)

The presence of the boundary causes two characteristic
waves to be reflected [10]. The generalized wave
coordinates, corresponding to these two reflected waves,

are presented by the two element vector, (Y ), where the
suffix R implying "Reflected”. The total displacement in
the system at the boundary, B, derives from both the
incident and reflected waves is given by

{ag} = {Sy} ¥; + [Sr] {¥Rr} (2)

The total force exerted on the boundary B is given by

{Fg} = {fyy} ¥ + [fir] {¥r} (€2))

The columns of the matrices, [Sjz] and [fRr], are
respectively the two normalized displacement and force
vectors of the characteristic reflected waves.

The displacement and force vectors at the boundary B
are related through the boundary receptance matrix by

{ag} = [Rpl- {Fp} (29)

Substituting equations (22) and (23) into equation (24)
yields

([SirIHRgH{fir}] {¥Rr} = [[Rglfy} -{Syl ¥; ()

Substituting equations (18) and (20) into equation (25)
gives,

[[Ry - Ry [fig] - [Ry] [ERIRN {wg} =
IRy - Ryl - *! [Rigl] {fi}- ¥y (26)

Equation (26) gives the complex amplitudes of the
reflected waves, (Yg), in terms of the magnitude of the
single incident wave, Y. In the general case there are two
incident and two reflected waves. At the natural
frequencies the modes of vibrations consist of these two
positive going waves superimposing upon the two negative
going waves to form a standing wave.

Allowing for the presence of all incident waves on the

right boundary, expanding equation (26) yields,
[[Ry - Rgllfig] - [Ry [l ™]] (W) +
([Ry - Rgllfyl- Ry, [Gille*]] (wp) = 0 @)
At the other end of the pipe, N-spans to the left, the

reflected waves corresponding to (Yg) impinge on the
boundary A which is characterized by the receptance
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matrix [R,].

These waves are reflected at A and become the positive
going waves () which ultimately arrive back at B.

The displacement vector {qu) at the boundary A due to
a single wave ¥R is given by:

{aa} = (Sigjle R . gy + {Syyde ™ i (28)

When all pairs of waves are present,

{ga) = [SRIENRY (Wg) + [Syl (€™ {w}  (29)

The total force exerted upon the boundary A by these
waves is given by,

{Fa} = 6RIE™R] {Wg) - (6 [ (w)  (30)

The displacement and force vectors, at the boundary A,
are related by

{da} = [Ra] {Fa} (3D

Substituting equations (29) and (30) into equation (31)
gives,

(Sir] + [Ral [fr]] [eNFR] (Wg) +

1Syl + [Ra) [6)) (™M1 {wy} = 0 32)

Finally, substituting the value of [S;] and [Sj] into
equation (32) gives,

[Ry + Ryl [fir] - [Ryllfir] [€¥R) [e™R] {wg} +
Ry + Ra] [f] - [Ry] [601eP e ™ (W} = 0 (33)

It is obvious that equation (33) has the same general form
of equation (27). These two groups constitute four
simultaneous algebraic equations with {{} and {{} as
the unknowns.

For a non-trivial solution of these equations the
following condition must be satisfied.

| F(Q) | =0 (34)
Where F(Q) is the coefficient matrix of the above

mentioned simultaneous equations. The roots of equation
(34) are the natural frequencies of the N-span pipe.

A computer program and some common subroutin

RESULTS AND DISCUSSION

written in FORTRAN IV are used for estimating the end
receptances of a single pipe span (inner identical spans o
extreme one) of a system consisting of a pipe with infinite
number of spans on equally spaced identical elastic
supports (Kp and K)). Upon estimating the end
receptances, the propagation constants of the flexural
waves travelling along the pipe are obtained over the
intended frequency range (0 to 100). Then, the na
frequencies of a pipe with three identical spans on four
equally-spaced elastic supports are calculated as a
example of N-span pipes.

Figures (6), (7), (8), (9) and (10) show the direct and
transfer receptances, when the pipe is considered rigidy
supported with zero rotational stiffness (pinned supports)
The velocity of flow u is taken equal to 2.0 and the mas

infinity at certain frequencies, which constitute the naturd
frequencies of a pinned-pinned single span pipe. Figures
(12) through (15) show the effect of the different
parameters on the natural frequencies of the pipe, show
in Figure (11), in the Q versus u-plane for the first three
modes of vibration. '
Figure (12) shows the effect of the fluid pressure on the
natural frequencies With two values of fluid pressure
taken to be 0.0 and 2.0, it can be seen in this figure that
at the same flow velocity, the increases of v decreases the
natural frequencies of the pipe associated with all the
three modes of vibration.
The effect of the mass ratio is shown in Figure (13)
through the two extreme values of the mass ratio which
are 0.0 and 1.0. It is clear from this figure that the mass
ratio has very small effect where the increase of the mass
ratio slightly decreases the natural frequencies of the pipc.‘
Figure (14) explains the effect of the rotational stiffness
with K, = 0.0 and 2.0. It can be scen that the increase of
the rotational stiffness shifts all curves to higher
frequencies. This effect is more pronounced with lower
modes. At the same flow velocity, the increase in the
rotational stiffness leads to the increase of the natural
frequencies of the pipe. '
Three values for the transverse stiffness are considered,
Kp = 105, 103, 0.5 x 103, to show its effect on the natural
frequencies. It can be seen from figure (15) that the
decrease in K shifts all curves to lower frequencies. The
amount of shift is more significant with higher modes.
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Figure 10. The direct and cross receptances, 8
y and 8, for a single pipe-span.
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Figure 11. Three-span pipe on identical equally spaced
elastic supports.

It can also be seen that the curves corresponding to each
mode diverge with the increase of the velocity of flow until
they meet each other at the horizontal axis at zero
frequency. These points of intersection represent the
conditions of the onset of static buckling associated with
the first three modes. Therefore, it is clear that the
transverse stiffness has no effect at all on the onset of the
divergence instability.

CONCLUSIONS

1. The increase of the fluid pressure decreases the
natural frequencies of the pipe for all modes of
vibration by nearly the same value.

2. The increase of the mass ratio slightly decreases the
natural frequencies especially with high velocities of
flow.

3. The increase of the rotational stiffness increases the
natural frequencies of the pipe and this is more
significant for lower modes.

4. The decrease of the transverse stiffness decreases the
natural frequencies of the pipe and this is more

significant for higher modes.
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