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ABSTRACT

NOMENCLATURE

The amplitude of the external dynamic load
MN).

The coefficient matrix.

The vector of known values (at certain time).
A function representing the equation of the
femoral articulating surface.

A function representing the equation of the
tibial articulating surface.

The moment of inertia of the leg (Nmsz).

The unit vectors along the X & Y directions
respectively.

The unit vectors along the X'& Y’ directions
respectively.

The mass of the leg (kg).

The external moment (Nm).

The unit normal to the femoral surface.

The unit normal to the tibial surface.

The position vector of the contact point in the
fixed coordinate system.

The position vector of the attachment point of

the m ligament in the fixed coordinate system.
The time elapsed from the start of motion (s).
The load time duration (s).

The orthogonal transformation matrix.

The fixed coordinate system.

The moving coordinate system.

The distance between the coordinate systems in
the X direction (m).
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A two dimensional dynamic model of the human knee joint is presented. In this model the surfaces of the tibial
and femoral condyles are represented by polynomials. The major four ligaments of the knee joint are modelled
as nonlinear elastic springs of realistic stiffness properties. These ligaments are medial collateral, lateral col-
lateral, anterior cruciate, and posterior cruciate ligaments. Nonlinear equations of motion coupled with nonlinear
constraints are solved numerically. The friction force is included in the mathematical model. Time derivatives
are approximated by Newmark difference formula and the resulting nonlinear algebraic equations are solved
by applying the Gauss elimination method.

Yo The distance between the coordinate systems in
the Y direction (m).
« The angle of rotation between the moving and

fixed coordinate systems.

{A}  The vector of incremental quantities.
im The unit vector along the ligament m.
B The coefficient of friction between the tibial and

femoral articulating surfaces.

A The position vector of the contact point ¢ in the
moving coordinate system.

Ppm  The position vector of the attachment point of the
m ligament in the moving coordinate system.

INTRODUCTION

The knee joint is the largest and the most structurally
complicated joint in the human body. This is due to the
fact that it connects the largest levers of the lower limb
(the femur and leg bones) which are characterized by the
widest range of movements during walking [1]. The knee
joint consists of two main joints namely, the tibiofemoral
joint and the patellofemoral joint. However in the present
work, special attention is given to the tibiofemoral joint.
This is agreed with Van Eijden et al. [2] who mentioned
that, with respect to the human knee it is better to
describe mathematical models which are limited to the
tibiofemoral part of the knee.

The major forces which act on the tibiofemoral joint are
the contact forces between the articulating surfaces of the
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tibia and the femur, the external forces and moments as
functions of time, the inertia forces and moments and the
ligament forces.

One of the most important model of human knee joint
was proposed by R. Crowninshield et al. [3], which was
based upon mathematical modelling and, in wivo,
measurements of ligament lengths. This model was ac-
counted for the geometry, characteristic of motion, and
the material properties of the knee. He pointed out that
the stability of the knee joint resulted from the ligamen-
tous structure of the knee and did not include the effect
of muscular activity. In the model, the cruciate, collateral,
and capsular ligaments were represented by thirteen
elements. The coordinates of the attachment sites and the
dimensions of the ligaments are found by, in vivo, and, in
vitro, measurements. This model was presented as a three
dimensional static model and the theoretical results were
compared with the experimental results. To simplify this
model, the relation between ligament force and ligament
strain was assumed as a linear relation. Neither external
dynamic loads nor body weight were considered in the
analysis. The effect of contact conditions, friction, nonline-
arity of ligamentous stress strain relationship, articulating
surfaces equations, external moments, and tibial length,
were absent as well.

M. H. Pope, et al. [4], presented a dynamic in vivo study
about knee joint. They conclude that the knee behaves as
a single degree of freedom spring -mass- damper system.
T.P. Andriacchi, et al., [S] presented a three-dimensional
mathematical model of the ligamentous knee joint. the
bony portions of the model were represented by rigid
bodies while soft tissue structures were represented by
springs. Studies with this model indicated that the
geometric type nonlinearities contribute to the overall
non-linear response of the knee joint. They used an
incremental linearization procedure “or the geometric and
material nonlinearities.

M. Moeinzadeh, et al. [6], proposed a mathematical
dynamic model of the two dimensional representation of
the knee joint. Using a two dimensional digitizing
technique the profiles of the joint surfaces were
determined. The ligaments were modeled as non-linear
elastic springs. Non-linear equations of motion coupled
with non-linear constraint conditions were solved
numerically by Newton Raphson iteration scheme, after
approximating the time derivatives by Newmark difference
formulae. The friction force between articulating surfaces,
and effect of ligament laxation or rupture were not
considered.
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_ of the tibiofemoral joint is presented, in which the f

In the present work, a two-dimensional dynamic

is fixed and the leg is extended applying impuls d
load. The non-linear geometry and ligament forces
considered. The difference between this work and

tibia is presented. In addition, effect of body weight on
ligaments and cartilages is also considered.

FORMULATION

The knee joint will be modelled as two rigid bodies
nected by nonlinear elastic elements simulating
ligaments. It is assumed that the femur is rigidly fixed
the tibia is undergoing a general plane motion relative
the femur as shown in Figure (1).

Figure 1. Coordinate systems locations and relativ
positions of the tibia and femur are shown for the twe
dimensional dynamic model of the knee joint.

Due to the two dimensional nature of the model, prope
components of the ligament forces in the plane of motior
are considered. An expression for evaluating the value o
the friction force as a function of the contact force i
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iced in the mathematical model, although the
ent of friction between the articulating surfaces,
igto the presence of the synovial fluid, is known to
ey low [7]; and was neglected in the model given by
lewzadeh et al [6].

T position of the tibia relative to the femur is descri-
iy two coordinate systems as shown in Figure (1). A
wing coordinate system (X',Y’) with the origin
miding with the centre of mass of the tibia and the
{5 s directed along the longitudinal axis of the tibia.
J stber coordinate system (X,Y) is fixed to the femur
wt the X-axis directed along the posterior-anterior
drection, and the Y-axis coinciding with the femoral
#agitudinal axis. The positions of the origins of both
coordinate systems are obtained knowing the equations of
the articulating surfaces of both the tibia and the femur.
The position vector of the origin of the moving system
relative to the fixed one is given by

;o =xo§ + yj 1)

Assuming rigid body contact between the tibia and the
femur at point C as shown in Figure (1),then the contact
surfaces may be represented by the mathematical functions

y = f(x) )
and,
y = H(x") 3

where f;(x) and f,(x") are two functions representing the
tibial and femoral articulating surfaces.

Since the contact point C lies on each of the profiles,
then:

?c = xci +ycj (4
and,
pe = xivyy )

The relation connecting the articulating surface profiles
f,(x), f,(x") and the angle of rotation (@) is found from
the condition of geometric compatibility of the tibial and
the femoral surfaces and proved to be,

) = @) +[Tp) ©)

Where [T] is an orthogonal transformation matrix given
by:
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cosa -sina
[T] =] .
sina@ cosa

™M

At the point of contact, both normals to the surfaces of
the tibia and the femur must be collinear. Let fi; andfl,

be the unit normals to the femoral and the tibial surfaces
respectively and directed toward their centers of curvature
[6], then fi, and fi, relative to the fixed coordinate

system, are given by:
d’f,
= 05 df
; & o
ld’f, e

fi, =

dx?
and,
d*,

108
ﬁ2= dx? 1+{ dflz]z =
a1,

dx?

The colinearity of the normals at contact point requires
that

fi, xfi, =0 at x=x_, xX'=x,

Then the contact condition is given by:
dx T dx’ ). =

1+(“_f:) (ﬁ)
dx s dx’ v -x;

The two-dimensional profiles f(x) and fy(x) of the
femoral and tibial articulating surfaces are given by M.
Moienzadeh et al. [6], as follows:

tana =

f,(x) = 0.04014 - 0.247621 x - 6.889185 x’

A 129



ABOUELWAFA, HELMY and EL-MIDANY: A Two-Dimensional Dynamic Model of The Tibiofemoral Knee Joint

- 270.4456 x° - 8589.942 x° (11)
And

f,(x') = 0213373 - 0.0456051 x' + 1073446 x> (12)

FORCE ANALYSIS

The tibiofemoral joint is subjected to several forces.
These forces are external and internal forces. The external
forces may be static or impulse forces. The internal forces
are those forces exerted on ligaments and the contact
force between the articulating surfaces of the femoral and
tibial condyles. The four major ligaments of the tibiofem-
oral joint are the lateral collateral ligament (LC), the
medial collateral ligament (MC), the anterior cruciate
ligament (AC), the posterior cruciate ligament (PC). Due
to the structure and anatomy of ligaments they will be
modelled as nonlinear elastic springs.

TTCCYT

Fy=MEDIAL COLLATERAL
F,=LATERAL COLLATERAL
F5; *ANTERIOR CRUCIATE
F,=POSTERIOR CRUCIATE

Figure 2. Forces acting on the moving tibia are shown for
the two dimensional model of the knee joint.

The directions of the ligament forces are given in Figure

(2) and according to Moienzadeh [6], the following force-
elongation relationship is assumed for each ligament (m),
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Frn = Km (Lm . lm)z’

Where, K is the force coefficient of the i
spring constant, L is the current length of the
at certain position and | is the original ligam
So F_, is the tensile force in the m® I
assumed that the ligaments cannot carry any
force; accordingly;

for L, > 1,

Fp =00 for Ly <1,

The force coefficient values, K, are estimated
to the data available in the literature [8] and [9)
values used here are given in table 1.

Table I. Ligament force coefficient
Ligament K, (N mm?)
MC 15
AC 30
PG 35
EE 15

Initial strains in the ligaments are taken equal|
since, at present, there is no accurate data avail
these strains as a function of flexion angle [6]. Th
cepted because the variation in the original lei
wide, and if an appropriate starting angle un
external load is chosen [6]. The ligament is consi
a straight line with length L and by simple g
using the transformation matrix and substitute s
values of the position vector of the contact point
to both fixed and moving coordinate systems, L,
by;

L =yl(r)-(1,)-T(p D= [(r)-(1,)-'

And since the ligaments are connecting the tibia
femur, so the unit vector (5.‘) along the ligs
directed from the tibia to the femur is

g G -G)-TG
= L
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un realize that (im) = %1, to indicate the direction
ent force with respect to the origin of the base of

inates (X.y).

lus the axial force in the ligament m, in its vectorial
becomes;

=F i, (17)

The positions of the insertion points of the ligaments in
the tibia and the femur used in this work are listed
§Table I1.

|
Table II. Coordinate values of the insertions of the
ligaments in meters.

lTigament Tiblia Femur
X m Y'm Xm Ym

MC 0.008 0.163 0.023 | 0.014
LC 0.025 0.478 0.025 | 0.019
AC -0.005 0.213 -0.023 | 0.019
PC 0.025 0.208 -0.032 | 0.024

The contact force N acting in the direction of the
ormal to the surfaces of the tibia and femur at the point
f contact;

N=yNfi atx =x, (18)

Vhere N is the magnitude of the contact force, and ¥y is
ither +1 or -1 to ensure the correct direction of the
ontact force [6].

Yy=11 atx =x, (19)
For the friction force and although it was neglected in
he previous models because the coefficient of friction bet-
reen the healthy cartilages of the human joints is too
mall due to the presence of the synovial fluid, [7], it will
e considered here as a function of the contact force to
ccount for its effect on elderly and disabled people. On
he other hand, the coefficient of friction will be
onsidered constant, during the range of motion, due to

the complex system of joint lubrication of the knee. Thus
the friction force will take the form

F, = uN(#4,)

The external force acting on the mass-center of the tibia
has a general form;

F, = (R,)i +(B)j (20)

This external force may be caused by knocks or by a car
crash or any type of accidents.

One of the most realistic forcing function used as a
typical representation of the dynamic load was given by
Engin et al. [12], as:

F,(t) = Ae* ™ gin(rip,) 1)
THE EQUATIONS OF MOTION

The equations governing the forced motion of the tibia
with respect to the femur are as follows:

In the x direction,

m=4
(F) +YN(q)), +8 uN(ﬁ,)y + E Fm(i_)x = Mx, (22
m=1

In the y direction,
m=4
(F), +YN(#,), +8 pN(d), + Y F (L)), = Mj, (3)
m=1

where & = +y for extension and flexion respectively.
Equating the inertia force with the summation of
external moments gives:

m=d
M +(Tp)(YNA,) +(T ') (8 pNA ) + Y (Tp(F 4,) =L a

m=1

(24

In which the subscripts x and y denote the components of

the related quantities in the x and the y-directions

respectively. The dots denote derivatives with respect to
time t.

For these equations, the description is completed by

assigning the initial conditions which are,
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X, =¥, =&=00.

Solving these equations of motion with the contact con- -

dition equation (10), and the two geometric compatibility
conditions (6) numerically, one can get the values of the
unknowns for each time station.

The six unknowns here are (a, X, Y, X, X, ,N),
knowing that these variables affect the ligament forces
because the current length of each ligament depends on

(@, Xy Yo X X')
NUMERICAL PROCEDURE

The numerical solution of the three equations of
motions, the contact conditions and the two geometric
compatibility conditions is as follows:

1- Newmark operators [13] are used to replace the time
derivatives with temporal operators.

x‘ - Zz_t(xt_xt-Al) _X"A‘

4
(At)?

4

X'= (X‘-X"“)—-——X"A‘-)"("“
At

Where At is a time interval and X, X are the velocity
and acceleration in the X-direction respectively.

Similar expressions for Y and « are found. The
superscripts of the above equation denote the time station
under consideration.

2- The variations in the variables during the time

interval At is small. A% and higher orders are
neglected.

3- Using steps 1 and 2, equations (6), (10), (22), (23),
and (24) take the form

(Al (A} ={D} (25)
where n is the number of the equation.

4- The resultant equations can be arranged in the
matrix form as follows:

[A,){4)} = (D) (26)

where i is the number of row, j is the number of column.
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These equations are solved using a computer pr
applying Gauss-elimination method with scaling factor
inverse matrix subroutines.The solution of delta quanli
at certain time is used to get the new values of
clements of the known values vector of the next fi
station. This step is repeated till the minimum
flexion angle.

RESULTS AND DISCUSSION:

The model presented is general and can be suitable i
a wide range of anatomical conditions, as leg length
variable external impacts. The results have to
considered as a qualitative measure of the consi
problem due to the fact that the mechanical properties
ligaments are not the same for all persons, the shape a
formulae of articulating surfaces are variable, and
weight distribution due to style abnormality also affes
the results.The different diseases of joints as osteoarthril
joint degeneration, rheumatoid, osteo-arthrosis or oth
diseases cause the increase in the coefficient of friction
the joint as well as changing the shape of the cont
contour of the articulating surfaces. Since the change
the contour formulae is different from person to pers
and requires very sophisticated equipments to acquire 1
therefore the effect of the coefficient of friction
restricted to healthy subjects. Although, it is very small,
effect on the lateral collateral ligament has to
considered. =

250
0.008
200 = 2N
\
Contact force
~ 1
E 1503 |
5 B/
-4 . \ |
2 1001 \ ’I
Jb=0.02
3 !
507
0

5 4% 35 25 IS
FLEXION ANGLE (deg.)
Figure 3. The contact and friction forces

plotted against the flexion angle.
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Figure (3) shows the effect of the coefficient of friction
on both the contact and friction forces. The two values of
the coefficient of friction used are 0.008 and 0.02. the
wesults presented in the figure are obtained for average
body weight of 70 Kg, tibial length of 420 mm and the
peak of pulse load is 60 N. The dashed line near the
horizontal axis is the friction force. From the figure, it is
| dear that increasing the coefficient of friction decreases
the contact force developed between the articulating sur-
faces. Also, it can be realized that the magnitude of the
friction force is too small to be considered.

300
9 — . C
- MC
, === AC
200 vovee PC |
] ',/

1007

LIGAMENT FORCES (N)

o9
. Laaldaaa

.08

Figure 4. The ligament forces for a coefficient
of friction of 0.008 plotted against the time
elapsed after the impact.

300 g

200

LIGAMENT FORCES (N)

l"
.

0.02 0.04 .08
TIME (sec.)

Figure 5. The ligament forces for a coefficient
of friction of 0.02 plotted against the time
elapsed after the impact.

Figures (4) and (5) present the relation between
ligament forces and time elapsed from the impact for low
and high coefficients of friction respectively for the same
conditions as Figure (3). From figures it is clear that the
lateral collateral ligament force increases with 50% of its
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value for low coefficient of friction. On the other hand the
peak value of the medial collateral ligament force in the
case of high coefficient of friction is decreased by about
36% than that of low coefficient of friction. This means
that the load is shared, in a way or another, between the
collateral ligaments. Not only the cruciate ligament forces
generally decrease with the increase of the coefficient of
friction, but also the shape of the curves is changed. For
low coefficient of friction the value of cruciate ligament
forces increases up to 0.02 second, then decreases till 0.04
second, after that it increases sharply. But for high
coefficient of friction the anterior cruciate ligament force
increases gradually without any point of inflection. For the
posterior cruciate ligament force a point of inflection takes
place after 0.06 second from the start of motion.

Then the increase of the coefficient of friction changes
the behaviour of the cruciate ligaments but decreases the
maximum forces developed in them and increases the load
in the lateral collateral ligament.

350 - -
0.08 Sec.
300 0.08 Sec
z Saaen A
L A
< 2501 \ "?f,,o 04 Sec
8 b
& 200 o =7
|79 -‘_‘a'
£ 1501
5
g
8 1003 0.02 Sec
“;
[ NeaAdatasenani e e A a s nsasan et I o
20 40 80 80 100 120

WEIGHT (Kaq)
Figure 6. The effect of body weight on the
contact force plotted after different time
periods.

On the other hand, the effect of body weight on the
contact force and ligament forces is found. In Figure (6),
the relation between the contact force generated between
the articulating surfaces and body weight is represented
for successive time intervals after impact. After 0.02
second the contact force seems to be constant with respect
to body weight. From 0.04 second and up to 0.08 second,
it is clear that the contact force is larger for persons under
70 Kg and over 90 Kg than that for average persons. This
result is in good agreement with the medical observations
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[15]. On the other hand, the number of overweighed
patients suffering from degenerative osteoarthritis is no
greater than the number of underweight patients who are
similarly affected [16]. In the present model the high
contact force of slim persons may exist due to the small
inertia of the thin leg which permits a wide flexion angle
after short time. This yields that the shock load achieves
its peak value after a short time.

300 3
o~ b=
= 3
& 3
3 0.04 Sec.
1250 3 y
2 E ™ N £
£ ol . /
3 200§ g /
I~ - At
5} 9 -
= -
< 1503
j 3
Q 3 e 0.06 Sec
© ‘l()O-:-"-,I ...~.:.:.._\ =
2 3 Nt n? 0,08 Sec.
<< = 3 P
5.3 - !
= 503 0.02 Sec
< 3
-1 L
3 AAAARBALASSAANANALRR AL ASAAARRARRARARRAZALLS |

20 40 80 B8O 100 120
WEIGHT (Kg)

Figure 7. The effect of body weight on the
lateral collateral ligament force plotted after
different time periods.

140
~ 3 ' , 0.06 Sec
& ] \ !
v 3 b y
5§ 1203 : :
() . ; ]
g 3 [ = ~io 0.04 Sec.
B 3 - .......-.---"----—- 0.08 Sec
= 100 1 ! i .
‘ = L] '
P : ! :
Ll = ) L’
™ - .-
< <
§ 80 -
A 3 0.02 Sec,
=< 604
o 3
= &
= 4
40 Frrrrrrrr T
20 40 80 80 100 129

WEIGHT (Ka)
Figure 8. The effect of body weight on the

medial colleteral ligament force plotted after
different time periods.
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400:
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300 -
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&S
© 4004
o =
o 4
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& 3 0.04 Sec.
‘[r: 01 ----- 0.02 Sec
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Figure 9. The effect of body weight on the

antirior cruciate ligament force plotted after
different time periods.

250 -
S
= :
~ 2003
- 200:
(7] 3
1%} =
& 3 '
5 i % ,-0.06 Bec.
1503 ; y
& - M tiis,
< 3 " 0.08 Sec.
- 2
194 5
g 100 o
= z
] =
E S0 4
3
3 5 i _ «0.04 Sec.
= & i gz
~ : == 0.02 Sec
=

20 40 60 80 100 120
WEIGHT (Kg)

Figure 10. The effect of body weight on the
posterior cruciate ligament force plotted after
different time periods.

These observations are also noticed in the case of the
lateral collateral Figure (7) and posterior cruciate
ligaments, while the medial collateral and anterior cruciate
ligaments behave differently. Figure (8) shows the relation
between the force developed in the medial collateral
ligament and body weight for a given time after applying
the load. The figure shows that the maximum amplitude
of the medial collateral ligament force occurs at 0.06
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d, which shows that the effect of body weight on the
jal collateral ligament force is generally as that for the
r ligaments.

The relation between the anterior cruciate ligament force
ul body weight is shown in Figure (9) in which, the
dect of body weight is similar to the other ligaments up
0008 second after motion is started. After that the effect
greversed giving a maximum amplitude of ligament force
presponding to a body weight of 80 Kg. This value
means that the body weight affects the anterior cruciate
fment force in an opposite manner compared with the
oher ligament forces. Figure (10) shows that the force
fveloped in the posterior cruciate ligament has slightly
iffected by body weight changes up to 0.08 second. But
fer 008 second the effect of body weight is
wmparatively high and its shape is nearly the inverse of
fiat for anterior cruciate ligament with a point of
iflection at 80 Kg body weight. This means that the effect
of body weight on the anterior cruciate ligament force
wincides with the anatomical fact which states that during
wme periods of rotation one of the cruciate ligaments is

tongated and the other one is shortened [17].

CONCLUSIONS

The used model at hand is made suitable for a wide
range of variables which were not available before. Its
results are in good agreement with the anatomy of the
ligamentous tibiofemoral knee joint, orthopaedic practice,
and data available in literature. It has to be clear that
these results give only a qualitative measure of the effect
of some variables. This is due to the great variations
accompanied with the models of biological subjects.

The results show that the body weight does not affect

generally the trend of the relation between the flexion
angle and the contact force or ligament forces, but only
affects the magnitude.
On the other hand, the contribution of friction force is
essential although the friction force is negligibly small.
This is because the change of the coefficient of friction
causes changes in the ligament forces specially the lateral
collateral ligament in which the increase on the force
developed in it is more than 50 % through the range of
healthy subject.
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