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ABSTRACT

This paper concerns with multiparameter adjustement method. This method needs to be combined with an
other unconstrained algorithm to minimize the objective function w.r.t. its two parameters. The combined
multiparameter adjustment methods are tested for eight different Problems, and results are compared to
evaluate them. It is found that the DFP algorithm enhances the method and makes it superperforms other
multiparameter adjustment methods. The effects of the maximum number of iterations of DFP, the choice
of the starting point and the DSC tolerance are also examined. A comparison between other unconstrained
NLP algorithms and the combined multiparameter adjustment method with DFP is also discussed. Results
put this method in the same category as DFP, Flecher and Rosenbrock methods from the superiority point

of view.
INTRODUCTION

Several varieties of penalty function methods have been
proposed, but the essence of all the methods is to
transform a constrained nonlinear programming problem
into an unconstrained problem or a sequence of
unconstrained problems. Thus several of the important
constrained NLP algorithms require the use of an effective
unconstrained minimization procedure. The advantage of
minimizing the unconstrained problem rather than the
constrained problem is that much simpler algorithm can
be used for the optimization. As might be expected, no
single one of the nonlinear programming algorithms has
proved to be superior for all nonlinear programming
problems under all circumstances.

One of the earliest techniques for obtaining the
minimum of a function is the steepest-descent method and
its modifications[1,2]. the main handicap in using this
method is its dependence on the relative scaling of the
decision variables. Second-derivative methods, among
which the best-known is Newton’s method|[3]. This method
requires the calculation of the inverse of the Hessian
matrix of the second derivatives of the function. Newton’s
method depends heavily on the starting point and it breaks
down when the Hessian matrix is singular. For large
problems, a major part of the cost can be attributed to the
solution of the Newton equations.

For these problems, the conjugate direction methods

[4,5] are widely used, due to their low storage
requirements. These methods of conjugate directions have
been found very satisfactory when the first derivatives of
the function are available. For large scale problems, the
conjugate direction method is truncated in order to obtain
an approximate solution to the Newton equations[6-9]. An
other class of methods termed variable metric exists that
replaces the inverse of the local Hessian matrix or its
inverse by an approximate metric which uses information
from only first order derivatives to do so [10-13]. Most of
these methods generate set of conjugate directions using
gradients.

In some cases, it is laborious or practically impossible to
calculate the first derivatives; consequently, there is a
definite need for minimization procedures which do not
require them. Some of these procedures are based on
conjugate direction, Others change one variable at a time
in a pattern move search [14-17].

This paper concerns with multiparameter adjustment
method which is classified as a conjugate direction
method. An other NLP algorithm is needed to be
combined with the multiparameter adjustment method to
solve the NLP problems in the two parameters of the
method. The combined multiparameter adjustment
methods are tested for eight different problems. The
testing problems have different number of variables and
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different degrees of nonlinearity. Results are compared to
evaluate these methods.

One criterion of evaluation is the robustness which is the
success in obtaining an optimal solution for a wide range
of problems, i.e. can an algorithm be expected to solve
most problems? of course any algorithm can be defeated
by a suitably designed problem. Furthermore we cannot
expect that an algorithm will pick out the global minimum
if the problem has more than one minimum, but it should
at lest reach a local minimum to be considered successful.
Other evaluation criteria are the number of functional
evaluations and the computer time to termination.

It is found that the DFP algorithm enhances the
multiparameter adjustment method and makes it
superperforms other multiparameter adjustment methods
which are combined with Newton method, gradient
methods, or other conjugate direction methods.

In this paper, the effect of some parameters is also
examined on the performance of the combined
multiparameter adjustment method with DFP. These
parameters are the maximum number of iterations of
DFP, the choice of the starting point and the DSC
tolerance used in minimizing along the line within the
DFP method.

Then a comparison among the combined multiparameter
adjustment method with DFP and other unconstrained
NLP algorithms such as steepest descent, Fletcher-Reeves,
Newton with and without minimization along the line,
Polak-Rebiere, Pearson-2, DFP, and Rosenbrock, is also
discussed for the same test functions. The result of this
comparison puts this method in the same category as
DFP, Fletcher and Rosenbrock methods from the
superiority Point of view.

MULTIPARAMETER ADJUSTMENT METHOD
The problem to be considered is
Minf(x) , HCR° (1)

x€ H

where f is the objective function and it is assumed to be
a nonlinear unimodal function.

X = [ X, X, ... x]" where x is the design vector and x,, X,
and x, are the design variables. We wish to find a point x ,
such that, if § > 0, then

B 80 Alexandria Engineering Journal Vol. 29, No. 3, July 1990 ?

f(x) < f(x), forallx: || xx [|[<& v}

To solve system (1), the following iteration is considered:

x&ED = x® ’tl(k) Af(x(k)) + [z(k) A x&D 0)

where V£ (x*) is the gradient of the objective function |
at the point x ® and A x®Vis the difference vector
between point x* and x*7.

AxED = O (& €

t®, and t*, are two parameters to be selected in each
search direction to minimize f (x* %, Vix®) + 1"
Ax("'l)).

Thus an other unconstrained NLP algorithm in two
variables is needed to be combined with the multiparamter
adjustment method to compute the two parameters (")
and t,. The superscript (k) indicates the iteration
number. All unconstrained NLP algorithms in two
variables use one-dimensional search for minimization
along the line. The quadratic interpolation procedure,
DSC (Davidon, Swann, and Compay), is the one
dimensional search methods used in these mult:
dimensional search in the present paper.

The major steps in the algerithm are:

1. Given x” and take on the first iteration Ax” =0,
ie x =x@

2. For the k” step compute x® , Vf(x® ) and

A x il ) x(k-l)

3. Evaluate t,* and t,“'which minimize the function

fx® 4,® Vf (x(")) + t,A xX*Y) by an efficient tw
dimensional search.

4. Compute x at iteration (k+1)
0 xS+ P A
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5. Test for stopping criteria, terminate when
) | Vit | <€
i) | x*?-x® | AND || £*7) A7) | < &

where € and €, are the allowed tollerances.
Otherwise Go To Step 2.
Every (n+1) iterations the algorithm is restarted with
&Y =0

The degree of precision in the solution depends upon
the termination criteria used to end the computation. The
same relative precision in the optimal point x and in the
optimal function f(x') is the joint base for stopping the
scarch in each algorithm. The reason for using such
stopping criterion is simply because termination could be
premature if the change in f (x) is used solely for a flat
plateau, or if the change in x is used solely for a steep

slope.

EVALUATION OF MULTIPARAMETER
ADJUSTMENT METHODS

The multiparameter adjustment algorithm is combined
with four different unconstrained algorithms; steepest
descent, fletcher-Reeve, Newton, and DFP. These
algorithms are chosen to be from different categories;
gradient method, conjugate direction method, second
derivative method, and variable metric method
respectively.

The convergence of the combined methods is tested by
applying such methods and other basic optimization
techniques to some standard test functions for which exact
optimal points are known. These test functions are given
in the Appendix. Results are compared to evaluate these
methods.

The major and most important criterion of evaluation
which is taken at this stage is the success or failure of a
given algorithm to solve a given problem. This criterion is
chosen because the ability of an algorithm to solve a wide
variety of problems is the most valuable feature to the

user of a programming code.

Table 1. Robustness of combined multiparameter adjustment methods.

Test function
f £ f f f
Combine f1 f2 f3 4 5 6 A 8
Algorithm
Steepest Descent | * 0.0 3 FE20 0.0 ® 0'0+ 0.0 8(1)
Fletcher Reeve 0.16 | 0,25 0258 RGE0 0.40 | 1.0 0.0 ;
Newton i 1., OSEEOE 1.0 1.0 0.25 | 0.0 (0.0
: + 1 0.s0l0.5"
DFP 1.0 01058 0.80 | 0.50 { 1.0 a0 5 5

* Converges only near the optimal

+ Converges to local minimum
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Function/
DFP Tol./ | Initial point
DSC Tol. (0)
X
P /E-6/ (-5, -3,}T (1.000118,1.
'3 (10,10 (1.000015.1.
P, /B4/ [-1,0.111" [.99503, .96
E—2 ["]0,1% [-%118'0 904
(0,11 (.999098, .
(1,500] [.999723,.
P /B=3/ (3,007 o | [-21.02665
B2 (0.2,0.21" | [-21.02665
(0.2,.00117 [ [=21.0266522
Py /Em11/ [0.1,4J$ [1.000063,4.
B3 (2,2.1] [.99954819,1.96
(2,2] (0.12877,1.738
P/ | (2,2,2)7,  |(1.000000,1,00
) (2,3,-1];  [[1.000346,1.
[-1 .0‘5] [om749)0
Fe/B6/ | [100,1001" | [1.7954,1 |
E=1 ["1 ,"2] T [1 .7%44 D0 I
(0.9, 0.117 | glcbal minim u

Ilbles.'l‘he,cﬁeetofchanﬁngi. [
g I | \
Function / - ' |
initial
point  |mNI Final, point
X(0)/DsC ik
Tol. 3

i 10 | [0.99895028,0
E-3 50 | [1.00412054,1

o | 20 | (099 ,0
F,/010,11°/ | 30 | [.997 .
Vg2 50 | [1.0087048,1.

F /11,6001 70 | [0.99771307,0.

-
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Table 4. The effect of ck an

Function/
drtiEial DsC Final Point
paint/ ol i
DFP Tal. E X
o |01 |[1.00412054,1 .ooeaz«ug
F /03,517 | -3 [1.0039387,1.0074227,1,—'1
E~4 E~10 |[.9942885,.98881024]
. 0.1 [1.7954,1,377859]
F6/[1oo,1001 /| 0.01 [[1.7954,1 .377!.@1!55:)1T
E~3 E~3 |[[1.7954,1.377859]
E=7 | [1.7954,1.377859}
'l‘a\lnle.’:.Robmitm:s.sof_h
unctions f1 f2 fﬁ
ethods .
Steepest 0.0 0.0 1.0
descent
Fletcher= 0.5 0.5 1.8
Reeves _ |
Newton with 1.0 1.0 0.67|
minimization L4
Newton with 1.0 0.0 0.0 C
fixed step
size i
Polak=Rebiere | 0.0 0.0 1.
Pearson=2 0.0 0.25 0.7
FP 1 . 0 1 '0 ‘T'
proposed 1.0 0.5 0.€
ethod !
Rosenbrock ) 1.0 0.3

B &3
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Results concerning robustness for the four combined
multiparameter adjustment methods are shown in table
(1). The factor of the robustness is calculated as the ratio
of the number of success in getting the optimal value to
the total number of trials with different starting points.
The combined multiparameter adjustment method with
DFP has the ability of solving all test functions. Also it
reaches the optimal solution in less number of stages than
other combined multiparameter adjustment methods. Thus
the DFP algorithm enhances the multiparameter
adjustment method and makes it superperforms other
combined multiparameter adjustment methods.

EFFECT OF THE ALGORITHM’S PARAMETERS

The effects of changing the starting points, the DFP
tolerance, and the DSC tolerance are also examined on
the performance of the combined multiparameter
adjustment method with DFP algorithm. The starting
points are the most influenced factor which affects
performance of the method. Great changes in the number
of function calls; N (F), the number of gradient calls;
N(G), the number of the t’s function calls; N (FT), the
number of stages; N, and the time; T are accompanied the
changes in the starting points. A sample of the results to
illustrate these changes is shown in table (2). It is clear
from this table that the initial point has a great influence
on the performance. Also it is important to notice that for
f, if the starting point is [2, 2 |" the algorithm converges
to a saddle point, for F if the starting point is [0.9,0.7]"
the algorithm does not converge to the local minimum
[1.7954, 1.377859]" but it tends to converge to the global
minimum which satisfies the equation x,= 1-0.25x’, and
the function goes to -o°. It is also important to mention
that some starting points in functions f, , f,, f, and f; will
make the algorithm diverges. Such examples of the last
point are;

x? = [1,2,:23] for f,, x(0) = [-5,-3]"
for f, x¥ = [0.5,0.5]" for f,, and x” = [0.1,1,1]" for f;

The effect of the maximum allowable number of
iterations, MNI, in the DFP algorithm depends on the
behaviour of the function of be minimized. This is
illustrated in table (3).

As the maximum allowable number of DFP iterations
increases the total number of stages decreases and the

total number of function evaluation and the time within
the early stages increase. This procedure helps the DFP
algorithm in getting close to the minimum quickly, hence
the improvement of increasing the maximum number of
DFP iteration will be very small at the next stages. For
this reason the time and the number of function
evaluations will decrease for some functions, and some
starting points. While for other starting points or other
functions these factors will increase then decrease as the
maximum number of DFP iterations increases. The
improvement in the value of a function and the norm wil
become constant after certain number of iterations which
means that any further iterations will be wast of time
without improvement.

Decreasing the value of the DSC tolerance will lead (o
slower convergence and more number of function
evaluations with negligible improvement in the value of
the function. Sometimes this will lead to error due to
division by small number. For some function like F, there
is no effect due to changing of the DSC tolerance, this
result is illustrated in table (4).

COMPARISON AMONG UNCONSTRAINED
METHODS

The convergence of the combined multiparameter
adjustment DFP algorithm and eight other unconstrained
methods is tested by applying such methods to the eighi
tested functions. The first criterion comparison which is
taken in this paper is the robustness. Results are shown in
table (5) for the nine methods.

It is clear from table (5) that the combined
multiparameter adjustment with DFp methods is
categorized n the same level of superiority of DFP,
Fetcher, and Rosenbrock algorithms.

The main disadvantage of Rosenbrock algorithm is that
it needs lot of time to prepare the functions to be tested
Also it takes longer time for convergence than the DFP or
the combined multiparameter adjustment with DFP
algorithms. In mean while Rosenbrock algorithm does nol
need calculation of the gradient which reduces its
complexity at each stage.

By comparing the DFP algorithm and the combined
DFP with multiparameter adjustment algorithm form the
number of function evaluations and the CPU time, we find
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that the combined multiparameter adjustment method
decreases the number of major stages but more iterations
are needed within each stage. Thus the number of
derivative evaluations in the proposed algorithm is less
than that of the DFP algorithm. While the number of
function evaluations in the DFP algorithm is less than that
in the proposed one. The CPU time of the proposed
algorithm is less a little bit than that of the DFP algorithm
for most of the testing functions. It is also worth at the
end of this comparison to mention that the proposed
agorithm has higher rate of robustness for f; and f;, while
the opposite is for f,, f;, f, and f;.

CONCLUSIONS

A multiparameter adjustment method is proposed and
combined with four different unconstrained algorithms.
These algorithms are tested for eight different test
functions. It is found that the DFP algorithm enhances the
adjustment algorithm and make it
superperforms the other combined multiparameter
adjustment algorithms. The effects of changing the
maximum allowable number of iterations of DFP, the
DSC tolerance and the initial points are also examined on
the performance of the combined multiparameter
adjustment method with DFP.

A comparison between other unconstrained NLP
algorithms and the combined multiparameter adjustment
method with DFP is also discussed. Results put the
proposed method in the same category as DFP, fletcher,
and Rosenbrock methods from the superiority point of
view.

multiparameter
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APPENDIX: TEST FUNCTIONS

The test function used were as follows
1. Min f, (x) = 100 (x,-x%)° + (1-X)’
f,(x)=0atx =1 1)°
2. Minf, (%) = (x, + 10%)° + 5 (x5 - x)° + (%, - 2x,)°
+10 (x- x)°
,x) =0 a x=[000 0
3Minf () = (%)’ (1% (Axex, (1- %))’

f,(x) =0atx = [1 unbounded]’,

X = [0 unbounded]”, or x = [unbounded 0]"
4. Min f, (x) =, + 12x,-1)*+(49x, +49x," +84x, +
2324x,-681)° |
f(x) =0atx = [0.252784 0.280878]" or

X = [-21.026653 - 36.76009]"
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