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Many fields of application, notably nuclear, chemical engineering and control theory, yield initial value problems
involving systems of ordinary differential equations with stiffness caused by eigenvalues close to the imaginary

axis. The choice of a particular routine is governed by many factors. Certainly numerical integration errors due
to numerical approximations and finite word length (round effects are important). Overall computing effort in
terms of processor seconds, are also important, particularly in real-time analysis and large multi-run studies.
Adaptive changes of integration step size h, especially for Explicit Routines, can ensure that at least local per
step errors remain within specified bounds. The optimum step size is selected according to different states
weighted time derivative. A lot of integration routines is used to test an approximate solution of four test

INTRODUCTION

Mathematical simulation in thermo- and fluid dynamics
are usually governed by system of Partial Differential
Equation (PDE) in time and space. Their spatial
semidiscretization generally leads to Initial Value Problem
(IVP) in Ordinary Differential Equations (ODE).

An IVP

d¥(E) _ a(y(e) , &) Y+ &(t)
dt
(1)
Y1 4); @12 dyp ¢,
y(t) =¥, A={ @51 vl (8) =Py
ym aml 2 amm d)m
with initial condition
Y(0) = Y,; ¢(t) = the source vector (2)
The system is said to be stiff if
(()Red < 0i = 1,2,., m 3)
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Problems regarded to exact solution, and to checck the quality of adaptive step size change criterion.

(ii) Max 4; >> Min 4

where A; are the eigenvalues of a matrix A. The ratio is
called Stiffness Ratio (SR). [1,2]

GENERAL FORM INTEGRATION FORMULAS
In the simulation of continuous-time systems, the

primary numerical task is to approximate integration of a
vector of a first order ODE.

dy
§r Gy, t)

We want to approximate, Y, for t = 0, t, t,, ...
tk#l
Y(E,,,) =Y(t,)+ f G(Y, t) .dt
Ex

For Multistep rules we utilize past values Y*' and G*' to
approximate an updated solution Y**'
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Table 1. Coefficients for Adames-Bashforth-Moulton Rules, Eq. (6).

Desionation B, B, B, B, B, Common Name
P1 0 1 0 0 0 open or explicit Euler
P2 0 3/2 -1/2 0 0 open trapenzoidal
P3 0 23/12 -16/12 5/12 0 Adames 3-points
predictor
P4 0 55/24 -59/24 37/24 -9/24 Adames 4-points
predictor
C1 1 0 0 0 0 closed or implicit euler
C2 1/2 1/2 0 0 0 closed trapezoidal
C3 5/12 8/12 -1/12 0 0 Adames 3-points
corrector
c4 9/24 19/24 -5/24 1/24 0 Adames 4-points
corrector
The solution of this equation with initial condition Y(t 0)
p p = Y, can be written in exponential difference from
yki- 3" A;Yk-i+hY*i+ h }° B,G*1
1=0 i=-1
(6) Y..,=Y, +hG + " -1-bF)(F G + FG) (9

where G* = G(Y*, K)(7)

Ceofficients A;, B, for some Adams-Bashforth-Moulton
Rules is shown in Table (1) [3]

EXPONENTIAL INTEGRATION METHOD |2]
Expanding the Eq. (4) in Taylor’s series we get

-g—;'- G+ (t-t,) x G+F(Y-Y,)

@®)
where:
G is a vector has components G /0t
and G is a matrix has elements 9G;/9Y,
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where I is the idensity matrix.

In this case we are faced with the problem of evaluating
the exponential of the matrix F. Using the series form for
exponential of the matrix we get

= hkfk—z
Yn+1'Yn+1<z:zT [G+FG]

Even if the norm of F is moderately large, in general we
are going to sum 20 to 30 terms of the series in Equation
(10).

MODIFIED HANSEN’s Method [4]
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Let we use gain Equation (4), put
G=L+D+U (11)

where LD, and U are lower, diagonl and upper Matrices.
then Eq. (4) take the form

dy _ ol
T Dy = (L+0U)Y (12)

After some matrix Algebric operation shown in [3] we get

Y,,;=e”Y, + (0 J-D) '[e"-e™][L+U]Yn (13)

n+l

where:
o, is the largest eigenvalue of the matrix G.

CONTROL OF ERROR AND STEP SIZE

Reliable numerical ODE-Solves performs error control
which is given by:
= max; ' (Y. ) i)/)'. I l = 1,2,...,m (14)

€max

where ¥, is the approximate numerical solution of state i.
Chossing an appropriate value for the step length is
really difficult, the step size estimate in this work is given

by:

h = max, [ y;/(dy,/dt), by, | (15)
Evaluated for different time step and h;, < h < h_,,
APPLICATION

Four typical test problem is tested using the criterion in
Eq. (15), and is also study the maximum error between
the exact analytical solution and the approximate
numerical one.

Time step behaviour within the solution period is also
shown aiming to increase the time step to minimize the
computation effort.

Application (1)
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Stiff System With Uncoupled States
In this test problem, for thr A-Matrix elements a;
i=12..m

a; = 0; g (16)
1.2 2% m

ot o
]

#t) = [ A Yo o ]T 17
with initial condition

YO = [yi I (18)
where y,, y; are the initial and final value of the state i
respectively

For this problem we check two cases:

1st one for SR = 10 the system is non-stiff

2nd one for SR = 1000 the system is highly stiff.

The exact solution for the given system in Eqations (16)
and (17) with the initial condition given by Eq. (18) takes
the form:

Y(t) = Yg + (Y; - Yoet1 (19)

Typical result for these two cases using either Exponential
integration method or modified Hansen’s method with
adaptive step size control criterion listed in equation (15);
is shown in Figure (1) with time step and maximum
numerical error behaviour.

Application (2)
Stiff System With Coupled States

For this case
-21 19 -20

A=[19 -21 20 (20)
40 -40 -40

with ¢(t) = 0; Y(0) = [1,0,1] (1)

its Analtytical solution [2]
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v, (©) =1/2%+1/2¢*"*(cos 40t +sin 40t)
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Figure 1. Time behaviour for uncoupled stiff-system.
(a) Non stiff system.

(b) Stiff system.
(c) Step error behaviour.

ya(t)=1/2°%-1/2¢™*(cos 40t +sin 40t) (22)
y5(t) =-e“(cos 40t-sin 40t)

Typical result for this case is shown in Figure (2) with
time step and maximum numerical error behaviour.
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Figure 2. Neutron level behaviour to step reactivity |

change.
Application (3)
Numerical Solution of The Reactor Kinetics Equations

The Kinetics Equations are relatively difficult to be

solved both analytically and numerically due to the large

difference in the time constants in the equations.
For one effective delayed neutron group, these equations
take the form

59 Rt
A A

%-).

n(t)

Y-c(t:)

. =
’

with initial condition
Y(0) = [n, CJ @)
For step reactivety input p(t) = p,, f = 0.0064, 1 =

0.0719 sec” and A = 1.0E-5 sec
The Eaxact Solution for this case [4]

n(t) =n )b _gtet/tre_Po 5 Ty
B -P o B -pP o 62'55
Comparison between analytical and numerical solution is
shown in Figure (3).

P d(e)- @ :,
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Figure 3. Time behaviour for coupled stiff system.
(a) State variable behaviour

(b) lime step and maximum error behaviour.
Application (4)

Solution of Stiff PDE

For one-dimensional unsteady heat conduction equation.
Let us define [1]

X, = jAx

t, = mAt (26)

uj(m) = u(x; tm)

By discretize the space x
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duj“") 3 uj(i"l)—ZUJs"')+uj(i"1)

dt (Ax)2/K €
with initial condition
u? = u(x0) = f(x) = f(x) (28)
and boundary condition
™ = u(Ot) = 0 (29)

uw® = ul) =0

The exact solution for this problem is given by:

(=]

u(xl t) = E anSinﬂe'k(nl)/[’)
n=1 L

Iq

a, = %ff(x)sin AT X dx
0

L

Integration of system given by Equation (27) and its
comparison with results drawn from finite difference
solution [1] for this test problem is shown in Figure (4).

——————— FD solution (S = §)

== = = =—jamericol solution

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4. Comparison between FD and numerica
integration solutions.
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CONCLUTIONS

Simulation in thermo-dluidynamics often require the
numerical solution of IVPs with stiffness caused by large
Stiff-Ratio due to large difference in system eigenvalues.
Therefore suitable ODE-Solvers is highly require for
minimum computation time, this is done by maximizing
the time step during the time marching.

Chossing appropriate criterion for time step selection
[6,7,8] must take large consideration in the next study.
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