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ABSTRACT

The research reported here here is concerned with the economic solution procedures for nonlinear equations
of structural systems whose geometric nonlinearity is significant. The modified Newton-Raphson procedure and
the BFGS (Broyden, Flectcher, Goldfrab, Shanno ) method are incorporated in a computer program and
examined. An accelerated procedure for the modified Newton-Raphson method using the search direction
precess is also examined. Several numerical examples are given.

NOTATION

d Vector of incremental displacements
f Out-of-balance forces

F Force vector corresponding to element stresses
i Variable

I Identity matrix

K Stiffness matrix

R External load vector

s Scalar

u Vector of displacements

yz  Vectors

[1  References

INTRODUCTION

The solution procedures for the equilibrium equations
are numerous. The first class of solution procedures is that
which satisfies or attempts to satisfy the equation of
equilibrium exactly (i.e. the out-of-balances equal zero).
The methods that come under that classification are the
successive approximations method, the Newton-Raphson
method, and the modified Newton Raphson method. An
iterative technique is necessary for convergence with the
above methods. However, the method of successive
approximations generally exhibits a very slow rate of
convergence and a possibility of divergence for problems
with significant nonlinearity. The Newton-Raphson method
has proved itself to be able to converge for highly
nonlinear behaviour and to control the error and estimate
the rate of convergence since the iteration can be
continued until a specified degree of accuracy is obtained.
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But, the large amount ofcomputational effort required to
compute and invert, at each cycle, the coefficient matrix is
considered a significant drawback of this technique. To
reduce the amount of computational effort, a modified
Newton-Raphson procedure can be employed where in the
coefficient matrix is held constant within the load
increment or possibly for several increments. The
possibility of slow convergence and even divergent solution
may occur with the modified Newton-Raphson method
when the coefficient matrix is not updated as often as
necessary.

The second class of solution procedures is that which
can be classified as the incremental procedures. The basic
incremental method is to divide the total load into small
increments producing a corresponding incremental
displacements. The coefficient matrix is calculated at the
beginning of each increment. But, the equilibrium equation
is generally not satisfied and the solution tends to diverge
from the true deformation path. Therefore, an improved
technique which includes some measures for guiding the
solution back towards the true path was developed.
Normally, this is done by some form of equilibrium
correction, thus, these methods can be said to be self-
correcting. The simplest of these techniques is to add the
current force residuals to the next load increment. This
load correction method corresponds to one cycle of
Newton- Raphson iteration followed by a simple
increment. An improvement of the above self-correcting
method was suggested by Stricklin, et. al. [11] in which an
amplif“Xxation factor for the residuals has been suggested.
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Although self-correcting procedures do not involve
equilibrium iterations, they don’t guarantee that true
deformation path is being found for all type of problems.
Therefore some acceleration schemes for the modified
Newton-Raphson method were suggested [1,2,4,5,6].

As an alternative to the Newton-Raphson method, a
class of methods known as matrix update methods or
Quasi-Newton methods have been developed [1,2,7,8,9].

METHOD OF SOLUTION

The conventional Newton-Raphson procedure can be
written as:

IK(i-l) dl - t(b-l) (1)
where
f*» = R - F* )

Where 'K is the tangent stiffness matrix of the system, d
is the incremental displacement vector, f is the out-of-
balance force vector, R is the external load vector, F is the
contribution of the elements internal forces vector, and i
refers to the iteration number.

d' obtained from (1) is then used to determine an
improved displacement vector u', where

o =u® + d (€)
The Quasi-Newton method provides a secant

approximation to the matrix from iteration i-1 to iteration
i, that is, if

ddi = -u®? O]
an
= f ©)

then, the updated matrix should satisfy the Quasi-Newton
equation

47 s A,
Kd=f (6)
or

g (Kl)i ?-i

Amongst the Quasi-Newton methods available, the
BFGS method has been applied effectively in the finite
element analysis [2], in which the update inverse K can
be written as
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Y = @+ 9 2machéh @ + 2 3™ ®
where
A d' B a2 9
y ' df  f! .
and
2 = (e d(,:) i ik g (10)
d" K* ¢

where the superscript T means transpose.
In fact, the vector d and f of equations (7-10) are
evaluated as follows:

1-Find d = (KH® (D 1)

d defines a "direction” for the actual displacement
increment, and a scalar function G(0) = d' . f is
calculated.

2- Evaluate the displacement vector u' = u*” + {2
where the multiple is the value at which G(s) < ETOL *
G(0). This is usually done by evaluating the function G for
a number of deodorant values of s and interpolating to
some strategy. (llanos algorithm is employed to find the
zero of the function G). Then

d=sd 1)

and 3 calculated from equation (5) is the corresponding
difference.

In actual computer implementation the search direction
[1,2] is performed without explicitly calculating the
updated matrix of equation (8). This can be written as
follows

i | "n) i 1yo i
d=>T+yz ;:r(liYZ')(K) +z'y) (19
» ¥R

~.I+72 )

Therefore, the process only involve vector and matrix
multiplication and it is claimed [2] that the work remains
smaller than the central back substitution as the number
of factors of equation (13) is less than 1S. It should be
noted that the updating process is not performed if the
condition number of the matrix (I +y zT) is large. The
condition number C is given as [1,2]

AN
df'
o unasstit »

Clest 4T K ¢ ) 1)
and the updating process is not performed if C > 10"
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Several problems were saved using the modified Newton-
Rapson method and the BFGS method and their results
have been compared to each other. Then the search
direction (equations 12-13) is used with the modified
Newton-Raphson method in order to accelerate the
convergence process and to make the modified method
more effective.

NUMERICAL EXAMPLES
1. Large Displacement Analysis Of A Cantilever

The cantilever shown in Figure (1) was subjected to a
uniformly distributed load. The finite element mesh

consists of five 8-node plan stress of isotropic linear elastic
material [2].

L = 10 inches.  h = 1 inch.
b = 1 inch. E = 1.2 10' Ib/in.
p =02

The problem was solved in 100 load steps. The B.F.G.S.
method proved to be faster than the N.R. method as it
solved the problem in 11102 sec. compared with 13105 sec.
with N.R. Using 75 load steps, the time taken by the
B.F.G.S. method was decreased to 8763 sec. while the
N.R. failed to converge. Both methods failed to converge
when fewer load steps are used performance in this
problem giving an optimum solution time of 8018 sec.
Using 50 load steps. Using fewer steps, the solution time
increases again due to the increase of the number of
iterations.

-. N
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L

Figure 1.
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Figure 4.
DOUBLE-LAYERED CABLE NET:

The horizontal prestress in each cable is 100 kips
(444.82 KN); its cross sectional area is 2 Sq. in. (129
sq.cm), while the area of the hangers is 0.5 sg. in.
(3.23sq.cm.) [10].

the modules of elasticity E is 24000 hsi (166 Kn/mm?).

The static response due to vertical load applied at node
15 is shown in Figure (4).

Using 10 load steps, the N.R. method was faster than
the B.F.G.S. method as shown in the table. Using fewer
load steps the modified N.R. method failed to converge
while the B.F.G.S method solved the problem in 211 sec.
Using 2 load steps and failed to converge in 1 step. The
modified N.R. method with line search again proved to be
the fastest method giving the optimum solution time of
197 sec. in one load step.

STATIC ANALYSIS OF A SPHERICAL CAP:

The cap shown in figure (5) was statically analyzed using
ten 8-onde axisymmetric elements [3].
a = 2667 o, = 24 x10’ Ib/in’
E = 10.5 x 10° Ib/in® €, = 021 x 810° Ib/in”
g =03 F = 245 x10* Ib-sec/in"
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The problem was first solved in 10 load steps, then fewer
steps were tried in each case. the minimum solution time
was 1530 sec. with the N.R. method with line search in
one step, compared with 1809 sec. with the B.F.G.S.
method in 5 steps, and 3565 sec. with the N.R. method in
10 steps.

It is seen that when the modified N.R. with line search
method solved the problem in one step only, the
conventional N.R. method failed in less than 10 steps
while the BFGS method failed in less than 5 load steps.

NONLINEAR STATIC ANALYSIS OF SIMPLY
SUPPORTED BEAM

The beam is discretized into six quadratic isoparamentric
elements as shown in Figure(7), subjected to its static
collapse load [4].

E = 3 x10* kip/in2
p =03

The powerful effect of the line search technique in
reducing the number of load steps without causing
divergence appears clearly in this problem. When the
problem couldn’t be solved in less than 16 steps using the
N.R. method and the B.F.G.S method as divergence
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Figure 5.
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Flow-chart for different iterative methods
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Figure 6.
Table 1. Comparison between the methods
==
NR N.R with line | search | B. F | G. S
Number of steps 10 10 S 2 1 10 5 2
Max. no. of iterations in step
Max. no. of iteration in a step 4 4 5 8 3 4 7
Min on. of iteration in a step 2 2 3 6 2 2 4
Av. no. of iterations per step 2-3 2-3 34 7 2-3 34 56
Total no. pf iterations (in) 28 28 19 14 16 2 16 11
Final displacement (sec) 791 7912 7.909 7.914 7.905 7.905 7.905 7.908
Time of equilibrium interations | 342 341 172 68 3 342 1m 68
(sec)
Time of equilibrium iterations 209 215 144 117 136 213 143 105
(sec)
Total solution time (sec) 666 677 384 223 197 680 385 211
=
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Table 2. Comparison between the methods

N.R N.R with line | search B PGS
Number of steps 10 10 5 2 1 10 5 2
Max. no. of iterations in step
Max. no. of iteration in a step 4 4 5 8 3 4 7
min. on of iterations in a step 2 2 3 6 2 2 4
Av. no. of iterations per step 2-3 2-3 34 7 2-3 34 5-6
Total no. pf iterations (in) 28 l.i38 19 14 16 22 16 11
Final displacement (sec) 791 7.912 7.909 7.914 7.905 7.905 7.905 7.908
Time of equilibrium interations 342 341 172 68 33 342 m 68
(sec)
Time of equilibrium iterations 209 215 144 117 136 213 143 105
(sec)
Total solution time (sec) 666 677 384 223 197 680 385 211

Table 3. Comparison between the methods

N.R. N.R. with line | scarch | B. F | G. S
Number of steps 10 10 5 2 1 10 )
Max. no. of iterations in step
Max. no. of iteration in a step 20 i 13 26 4 S
min. on of iterations in a step 2 2 3 7 2 3
Av. no. of iterations per step 4-5 34 56 16-17 2-3 34
Total no. pf iterations (in) 45 32 92 33 31 27 19
Final displacement (sec) 0.145 0.146 0.146 0.146 0.147 0.146 0.146
Time of equilibrium interations 119 120 60 24 12 121 57
(sec)
Time of equilibrium iterations 1948 1556 1404 1849 1367 1381 1014
(sec)
Total solution time (sec) 3565 3140 2196 1530 2975 2975 1809
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Table 4. Comparison between the methods

N.R N.R with line | search
Number of steps 16 16 8 4 1 16
Max. no. of iterations in step
Max. no. of iteration in a step 53 5 13 27 4
Min on. of iteration in a step 1 1 3 3 1
Av. no. of iterations per step 78 34 6-7 14-15 2-3
Total no. pf iterations (in) 126 54 51 57 57 42
Final displacement (sec) 2.786 2.786 2.786 2.786 2.774 2.786
Time of equilibrium interations m 8 40 20 4 80
(sec)
Time of equilibrium iterations 473 2399 2445 3115 3594 1968
(sec)
Total solution time (sec) 6458 4393 3448 3618 3721 3975
Table 5. Comparison between the methods
N.R N.R. with line | search B. K G. S.
Number of steps 15 15 7 3 1 15 7 ¥ 1
Max. no. of iterations in step
Max. no. of iteration in a step 18 4 6 8 4 4 6
Min on. of iteration in a step i 1 1 2 1 12
Av. no. of iterations per step 23 1-2 2-3 4-5 1-2 2 34
Total no. pf iterations (in) 38 22 17 14 15 21 14 118
Final displacement (sec) 4.28 4.28 4278 4.282 4.137 4.281 4279 4277 4.287
Time of equilibrium interations | 180 181 85 36 12 180 8 36 11
(sec)
Time of equilibrium iterations 249 17 133 116 131 187 117 102 94
(sec)
Total solution time (sec) 607 542 312 200 168 558 300 191 131
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occurred, it was solved in only one step with the N.R.
method with line search, but the optimum solution time
was obtained using 8 load steps as the average number of
iterations increases significantly using fewer load steps.

The hyperbolic net shown in Figure (9) and is its
necessary data were given by Morris [10]. The EA values
are: EA = 15500 kgf (152 KN) for the interior cables and
40300 kegf (395Kn) for the boundary cables.

When solving the problem in 15 steps, the N.R. method
with line search achieved the minimum solution time of
542 sec., but the optimum solution time of the problem
was obtained using the B.F.G.S. method. It should be
noted that using the line search process, almost 75% of
the solution time of the original N.R. method was
reduced.

CONCLUSION

The standard Modified Newton-Raphson method needed
more time and load steps than the BFGS method in
almost all the problems solved.

Using the proposed technique of introducing the line-
search process into the Modified Newton-Raphson
method, the solution time and the number of load steps
needed were reduced to the minimum, and although, in
some problems, the solution time of the BFGS method
was less than that of the proposed method when using the
same number of load steps, it was noticed that the BFGS
method failed to converge when using fewer load steps
while the proposed method did converge.
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