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ABSTRACT

Numerical solutions for the momentum and energy differential equations were obtained for laminar
fully developed flow through annular regular polygonal ducts. The hydrodynamic results are casted
in form of friction factor, incremental pressure drop and the hydrodynamic entrance length. The
Nusselt numbers, under constant heat flux per unit length, are presented for three specific inner and
outer circumferential boundary conditions which are, equal inner and outer wall temperatures and
perfectly insulated inner or outer surfaces.

NOMENCLATURE

A Annular duct area. (m2)

a Length of outer polygon side. (m)

b Length of inner polygon side. (m)

D Equivalent diameter (m)

f Friction factor.

H Spacing between nodal points in x-direction.
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Heat transfer coefficient. (W/mzK)

Incremental pressure drop.

Spacings between nodal points in y-direction

(m)

Thermal conductivity. (W/m k)
Hydrodynamic entrance length. (m)

Number of polygon sides.

Nusselt number.

Pressure. (N/mz)

Wall heat flux per unit axial length. (W/m)

Reynolds number.

Perimeter of solid walls. (m)

Temperature. (K)

Velocity. (m/s)

Transverse cartizian coordinates. (m)
Axial cartizian coordinate. (m)

Thermal diffusivity. (m?/s)

Annular ratio = b/a.

Angle of polygon symmetry = n/N.

Viscosity. (kg/m.s)
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SUBSCRIPTS SUPERSCRIPTS
i Inner wall. * Dimensionless
m Maximum. - Average

o  Outer wall.
INTRODUCTION

The annular duct is one of the most important
applications in the compact heat exchanger
technology, since it is considered a simple packaged
heat exchanger when two fluids pass through the
inner duct and the annular cross section. The
laminar flow through the annular circular duct was
extensively discussed by Lunberg et al. [1]. They
obtained the velocity and temperature distributions
for constant and variable wall temperature. Kays [2]
analysed also the problem as well as the single
circular and single non-c¢ircular ducts to obtain the
friction factor and Nusselt numbers. Lundgren et al.
[3], using Green theory, obtained a closed form for
the incremental pressure drop in the duct entrance
length while Mc-Comas [4] estimated a
hydrodynamic entrance length based on Lundgren
[3] incremental pressure drop. The Nusselt numbers
under constant heat flux of laminar flow through
single regular polygonal ducts are obtained by Cheng
[S]. Shah [6], using the least square matching
technique, solved the momentum and energy
equations in several non circular shapes. Topakoglu
et al. [7] found the velocity and temperature
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distributions of the laminar flow through annular
confocal ellipitical duct for different values of core
size. They tabulated the Nusselt numbers at the inner
and outer walls for equal wall temperatures and
perfectly insulated inner and outer walls. Shah and
London [8] gathered all hydrodynamic and heat
transfer results of the laminar flow through circular
and non circular, single and annular ducts.

From the review of literature in hand, the
hydrodynamic and heat transfer informations about
the flow through the annular non circular ducts are
needed to make the heat exchangers designers able
to choose the most efficient, economical and suitable
geometry.

ANALYSIS

Figure (1-a) illustrates cross—-section of the annular
regular polygonal horizontal ducts, whose outer and
inner sides lengths are "a" and "b" respectively.
Figure (1-b) shows the calculation domain which
represents (1/2N) of the original domain due to the
two lines of symmetry. The angle "¢ is the only
parameter which represents the type of polygon
"Xxd is equal to n/N.

GEOMETRICAL CONCEPTS

The following geometrical relations are used to
calculate the area, the perimeter, and the equivalent
diameter of the annular regular polygons with
respect to the annular ratio (¢), as:

A= 114(1 - &) cot ¥] a? (1-a)

S=N(1+¢)a (1-b)

and

D =4A/S =[(1 - €) cot YJa (1-¢c)
The number of nodal points in "x" and "y" directions
"m" and "n" as well as the nodal point spacings H, K,
and K, are chosen in a way such that the nodal
points are located on the inclinde symmetrical line.
Therefore, the relation between i,j on the inclinde
boundaryis j=m +1i-1and n =2m - 1. Also the
nodal points spacings H, K; and K, are calculated
from,
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H =[(1 - €) cot y/{2(m-1)}]a (2-a)
K, = [¢/{2(m-1)}]a (2-b)
and
K, = [(1 - €)/{2(m-1)}]a (2-c)
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Figure 1-a. Annular regular polygonal ducts.

OMENTUM EQUATION FORMULATION

The reduced momentum differential equation
governing the velocity distribution is,

82u+62u =_l_cl_P_ 3)

axt 3y 6 dz
In the fully developed region, the axial pressure
gradient is constant while the boundary condition
with no slip at the duct solid wall is u = 0 at the
inner and outer surfaces. Consider the symmetrical
lines, the velocity Dirchlet boundary value problem
is changed to Neumann boundary value one i.e.
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du/dy = 0 at y = 0, while (du/dy) = (tan ¥) (du/dx)
at the inclined symmetrical line.

The following dimensionless group are introduced
in the momentum differential equation and in the
boundary conditions as well as the geometrical
relations,

X =x/a, y' =y/a, A’ = A/az, S = S/a,
D =D/a

H =H/a, K, =K,;/a, K, =K,/a
and u = u/(az/é)(dp/dz) (4)

A
Sy

=) }-114 izm

Figure 1-b. Calculation Domain.

Therefore, the dimensionless momentum differential
equation becomes,

Fut A

—Ht T
ox 2 32
The above equation, when it is applied on the

internal nodal points, is casted in a finite difference
formulation as,

+1=0 (5)

(u‘i+1,j _2u‘iJ % u.i-l,j)/ H' +(“‘i,m

- 2uT u i )/K =0 (6.a)
in the range of j = 2 to m-1

(u'i+l,j -2u.i,j * u.i-l,j)/ K1 +(u.i,j+l

- 20 /Ky =0 (6.b)
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intherangeof j=m+1tom+1i-2,
and
Wi = 20 + W )/H +
20 K K + K}
¥2u”, K (K #K )
20, /(K K )+1=0 (6.c)

Also the finite difference formulations for the solid
boundary conditions are:

w0 ati=landu’p;=0 ati=m
and at the lines of symmetry are:
at j=1 du'/dy =0 at y =0
or

-3u' +du',-u5=0 M

at .j = s o=l (i.ncli.ned line of symmetry) i.e
du /dy = (tan ) du /0x

then,
* *
tan ¥ Uisim+i-l  “Yim+il
]
H
_ Mim+il 7Y im+i2
K,

Regarding the equations (2-a) to (2-c) with the
dimensionless relations (4), that tan ¥ = K,/H, then

u.i,m+i-l={tan2¢(u‘i+ 1,m+i-1)+u‘i,m+i-2]/ (1+tan’ y) (8)
ENERGY EQUATION FORMULATION

The energy equation for the fully developed
laminar flow under constant heat flux per unit axial
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length is,

T T u dT
= = — 9)
ox 6y2 a dz

In that thermal situation, the average temperature

gradient along the duct axis is constant. Therefore,

the problem is a normal Poisson’s differential

equation since the term dT/dz is constant [8]. The

energy equation is solved in three specific boundary

conditions on the inner and outer peripheries, which

are

1.  Equal outer and inner surfaces temperatures.

ii. Insulated inner wall while the outside wall
temperature is circumferentially constant.

iii. Insulated outer wall while the inside wall
temperature is circumferentially constant.

The dimensionless temperature takes two forms for

case (i1) and (iii), that

a* 4P 1 dT

THT-T( — . — =, =) (10.a)
(T DA \) dz a dz
1n the second case
and
i 5
- a dP 3" d'R
T=T-T)/l — .= . =45 ==y (10-b)

6 dz a dz
in the third case.
The dimensionless energy differential equation
becomes,
T T’ o e
w Y T tu.E
ax2 dy 2

The finite difference formulations of the internal
nodal points of the energy equation take similar
forms to those of the momentum equation except
that the source term is the velocity u’; j instead of
unity in the momentum equation, equations (6-a),
(6-b) and (6-c). The boundary conditions at the lines
of symmetry are similar to the velocity boundary
condition of these lines (Neumann boundary value
problem).

For the inner and outer solid surfaces, the
boundary conditions change according to each case
of the three thermal cases:

1) For equal outer and inner surfaces temperatures
case:

Ty=Tg,:=0 (12)

i1) For insulated inner surface case:

T, =0

m,)

(13-a)

and T')j=(4 Ty - T 3)/3 (13-b)

iii) For insulated outer surface case:

T’ =0 (14-a)

T = (T g5 = Tao)/3 (14-b)

forj=2ton -2

T =

m, m-1,j (14-c)

forj=n-1

T o %

my

(14-d)
forj=n
TECHNIQUE OF SOLUTION

The program routine of the numerical solution is
prepared to solve a calculation domain of m = 25
and n = 49 where n = 2 m - 1. An iterative
procedure using Gauss-Seidel method is used for the
momentum and energy equation respectively. The
number of iteration steps increases from about 100
steps at € = 0.9 to 1600 steps € = 0.05 especially
when the solid surfaces are insulated.

The velocity distribution obtained from the
numerical solution of the momentum equation is
integrated over the calculation domain using the
modified trapezoidal method in order to calculate
the average velocity as,

u = ff ot dx'dy /A" (15)
The friction factor, the incremental pressure drop
and the hydrodynamic entrance length are obtained
as follows:

f.Re=-D"/2.u) (16)

while the incremental pressure drop, Kp, according
to [3] is calculated from,
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Figure 2. Friction factor versus the duct annular
ratio.
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Figure 3. The incremental pressure drop versus
the duct annular ratio.
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Figure 4. The hydrodynamic entrance length
versus the duct annular ratio.

Generally, all the hydrodynamic functions i.e.f.
Re, Kp and L,/Re.D change with sharp rate in the
range of € = 0 to 0.1 since the solid boundary,
whatever small is, creates a zero velocity contour
inside the duct. !

Figure (5) illustrates the Nusselt numbers variation
at the inner surface (Nu;) and that at the outer
surface (Nuy) 1in the case of equal walls
temperatures. The Nusselt number at the inner
surface, for all polygons, decreases from o ate — 0
to the parallel plate limiting value 8.235 [2,8] at € =
1. The equilateral triangular has a minimum value of
7.803 at € = 0.5. The Nusselt numbers of the outside
surface (Nu,) increase from the single duct values,
4.3636, 3.978, 3.605, and 3.111 for the circular,
hexagonal, square, and triangular ducts, at € = 0, to
the parallel plate value at e = 1.

In the case of perfectly insulated inner surface, the
Nusselt number at the outer surface (Nu,), Figure
(6), increases with the increase of (¢) from the
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single duct values at € = 0 to the limiting value of
two parallel plate having one side insulated which is
5.385 [2,8]. The relation between Nu, and € seems
to be straight line in the range from 0.2 to 1.0
extended to € = 0.025 for the triangular one.
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Figure 5. The Nusselt number at the inner and
outer surfaces versus the duct annular ratio with
equal temperatures of walls.

Figure (7) represents the Nusselt numbers of the
inner surface when the outer surface is perfectly
insulated. The values decrease from o at e = 0 to
the limiting value at € = 1 which is also 5.385. The
annular square has a minimum value of 5.074 at € =
0.06 while for the annular triangle, a minimum value
of 3.133 occures at € = 0.5.

Inspection of figure (5), (6), and (7), indicates that
the Nusselt number values of the annualr circular
duct for all annular ratios and all thermal cases are
higher than those of the other polygons and the
value decreases as the number of the polygon sides
decreases.
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Figure 6. The Nusselt number at the outer wall
versus the duct annular ratio with insulated inner
wall.
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Figure 7. The Nusselt number at the inner
wall versus the duct annular ratio with
insulated ouuter wall.
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CONCLUSION

The hydrodynamic and heat transfer results of the
laminar fully developed flow through the horizontal
annular regular polygonal ducts are obtained with
trends agree well comparing with those of the
annular circular duct (N — ©0). Also the results show
good agreement with the limiting values of the
parallel plate and the single ducts.

Wide extensive work may be carried out in future
for such a pproblem applied on the eccentric annular
regular polygonal ducts as well as irregular annular
polygonal ducts.
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