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ABSTRACT

The coupled aerosel-light beam system is studied. For water droplets the energy balance equation is solved by
numerical integrations. A comparison between the present results and previous results is offered for the
maximum temperature rise of the water droplets. The effect of the beam intensity on the droplet heating is
studied. The mass flux and the vaporization rate are investingated in both the low and high energy case. A new
parameter describing the droplet tempeature decay is defined.

INTRODUCTION

The problem of the heating and vaporization of
absorbing droplets in intense light beams has been studied
by a number of investigators [1-3]. In a previous
investigation [1], an approximate solution was obtained for
the energy balance in a spherical fluid droplet irradiated
by a pulsed light beam. The vapor kinetic energy term has
been omitted from the energy conservation equation.
Furthermore, the mass flux has been expanded in a power
series up to the seconed order. The results for this
second-order appoximation is compared with the
corresponding present resuts obtained in our paper using
numercial integration solution.

In many applications of practical importance, and at high
irradiance, the aerosol heating, vaporization, and
conductive heat losses are the dominant energy dissipation
mechanisms for the propagating beam. As the pulse
energy increases, the vaporization is the dominant energy
draining mechanism. When the droplet radius dosen’t
exceed 10 pm and the incident fulx level is in the range of
10’ -10° W/cm’, diffusive evaportion is the dominant
process in the high-energy laser interaction with water
aerosols. By way of contrast, for fluxes reaching 10’
W/em®, explosive vaporization and shock formation
become important. The effects of nonuniform droplet
heating and the localization of the beam at the droplet
walls are significant at short times and for larger droplets
whose radius exceed 10 pm.

In the present work, we consider the heating and
varopization of absorbing water droplets in an intense
pulsed light. The droplets absorb energy from the
propagated light so that their temperature rises as a
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function of the droplet size beam intensity and the pulse
length. Due to the rise of the droplets temperture, they
vaporize and heat the ambient medium conductively. In
otherwords, the amount of the energy absored by the
fdropet, during passage of the pulse, is deposited into
hheating the droplet, vaporizing the droplet, and heating
the surrounding medium.

In this paper, we study the effects of the beam
parmeters, as well as the droplet size, on the temperature
rise of the water droplets. The energy balance equation,
using the exact expression of the mass flux, is solved using
the numerical integrations. The results of the present
numerical solution show that the previous second-order
approximation breaks down except for the cases disussed
later.

For a more rigourous solution of the energy conservation
equation, the vapor kinetic energy term and the droplet
shrinkage term are included. The former term has an
appropriate contribution to the droplet temperature in the
high energy case. For the sake of completeness, we
include the second discussed previously by Davies and
Brock [4]. This energy term is about 30% of the droplet
heating energy in the low emergy case[5]; it becomes
comparable with the heating energy case, but then the
energies of shrinkage, heating , and conduction are small
compared with the vaporization energy.

In this paper, we study the effect of the beam intensity
on the droplet heating through a parameter defined as the
critical beam intensity which is required to heat the water
droplet up to its boiling temperature. The mass flux and
the vaporization rate are studied carefully through the
effects of the beam parameters and droplet size. The
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temperature decay time, as a new parameter, is defined in
this paper. It is investigated accurately as a function of the
beam paramters and droplet radius.
Droplet temperature rise

The time-dependent droplet temperature T, may be
obtained from the solution to an energy-conservation
equation that describes the balance between absorption
and dissipative processes within a droplet of radius y. The
energy-balance is [1]
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where p, C, L, and a are, respectively, the droplet
density specific heat, heat of cvaporimtiofx, and - the
frequency-dependent bulk absorption cofficient; p’ , T,
and K are, resultively, the density, temperature, and the
thermal conductivity of the surrounding medium. I is the
intensity of the beam and m is the mass flux.

The term 4 n o mC(T-T,) is the droplet shrinkage
energy term which is included in this paper for the sake
of completeness. The term 4ao’[mL+mC(T-To)]
represents an effective heat of evaporization.

In the quasi-stedy approximation, we use[1]
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where D, M, and C, are the vapor difusion coefficient,
molecular weight, and speciffic heat, respectively. R is
ideal gas constant, and Y, is the ambient vapor mass
fraction.

Inserting Eq.(3) into Eq.(1), and using the dimensionless
variable X (t)=[T(t)-T,]/T,, we obtained the following
energy balance equation for water droplets
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where T,=300 °K, m (t) is computed for water droplet
from Eq.(2) as

3x10° 0.9862
m(t) = — = I, (5a)
a 1-0.0138 exp(B)
and
B = 1632 il (5-b)
1+X(t)

Equation (4) is solved numerically using an intensity
profile I (t) of thye form

v =1, 0< tst, (©)

= 0, elsewhere

The time step At is selected not more than 10”7 sec, for
pulse lengths not less than 5 psec, to give a high accuracy
for the time-dependent droplet temperature. This achieves
stability in the numerical integration scheme. The pulse
length t, is chosen so that t, » t,, where t, is the droplet
heationg time: the time scale for the droplet to approach
a steady state temperaturer [1].

For water droplet we estimted, at t,=300 oK, the
droplet heating time which is obtained as a function of
dropet radus in following formula

1,(0,]) = 34 x10'0* [32 + & al]'?, sec )

where o” is in m® , and (0 al) is in W/m.

Figure (1) illustrates the droplet temperature rise AT (t)
versus normalized time t/t, for the selected value of
droplet radius and beam intensity al for a 5 psec pulses.
a frist feature of interest is that, the temperature of the
larger droplet radii increases more faster with time than
the temperature of the smallest ones. This occurs during
the passage of the pulse up to a maximum temperature
rise AT, at the pulse end (t=t).. It is clear that the
droplets of samall sizes reach a steady state temperature
during the heating phase. This is because, according to Eq.
(7), such droplets have heating time t, « t,.

Table 1. shows a comparison between our present
results, obtained through numerical-integration solution,
and the results of Ref. [1] obtained by the second-order
solution. We can find that the previous results are in good
agreement with the present results for 16>d’al
(W/m)>1, It is clear that the second-order approximation
used in Ref[1] is excellent approximation foro’al=W/m.
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Figure 1. Variations of the droplet temperature rise (W/un )
with normalized time. Figure 2. Variations of the maximum droplet

temperature rixe with beam intensity.
Otherwise, the numerical solution numerical values for
AT, less than those of Ref.[1] which obtained by the

secound-order solution.

Critical beam intensity

Figure (2) gives the intensity dependene of the maximum
temperature rise AT", for selected values of the droplet
radii. It is evident that for a given droplet size there is a
critical beam intensity al (o) required to heat droplet up
to bolong temperature Ty. The correlation between al,
(o) and o is given in Figure (3). The feature of interest
is that all droplets having radii more than 2 pm need
approximately the same critical beam intensity to heat up
to Ty. For dropletswith 0.3 <o(um) <1, the critical beam
intensity is inversely proportional to owith a neagative rate
(8%al)/3d". All droplet less than 0.3 pm have a linear
proportionality with the critical intensity.

g
1

oI X107 (W/cm® )
K 8 8 B & B
I L

o 1 L T 1
Steady-state vaporization rate 0.1 0,48 0.8 1.4 1.62
O(m)

For water droplets, we estimate the droplet decay time Figure 3. Variations of the critical beam.

7, [1], as a function of the intensity, al under the final
following from
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al=10* W/cm?

al=10° W/cm?

O(Lun) 051 005 1.0 200 0.1 002 014
The present
results 4x10”"  7.3x107° 0,01 001N 18080 34,1
ATm( K)
Ref.[1]
results 3x10™° 0.07 0.10 0.118 4 14 41
ATm( K)
o%al (W/m) 107" 2.5x107°  0.01 0.040 1 4 16
Table 1. A comparison between our present results and the results of Ref. [1].
1, = 9.5 x 10° (al)?, sec (8) Ve(o,)) = 4nd’m(o)l). (15)

where al is given in W/cm’.

For pulse length t, « 1, the radius of the froplet may
be taken to be approximately constant, i.e.0(t)=0(0). The
droplet is characterized by the ambient pressure and
temperature prior to the arrival of the pulse at t=0. For
times t>0 the droplet energy from the beam. hence, both
of the droplet temperature and vaporization rate is
increased up to the pulse end where t=t,.

The vaporization rate Vy , as a function of droplet
radius o, is given by
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When the droplet radius and the beam intensity are
selected so that, according to Eq.(9), 1, « t,, the droplet
temperature reaches to its steady state. This case leads to
steady state values for both m(o,I) and Vi(o,I). Figures
4 and 5 show the variations of both the steady state
vaporization rate and mass flux with the droplet radius for
the low and high energy cases.

In Figure (4) it is clear that, in the low energy case, the
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Figure 4. Variations of the mass flux m and
vaporization rate Vy with droplet radius,
al = 10' W/em’,
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Figure 5. Same as in figure 4, but with I=10° W/cm’.

mass flux has a positive rapid correlation with the smallest
droplet radii, and a negative slow correlation with the

larger droplet radii. for droplets with 0>03 pm, the
vaporization rate has a linear dependence with the droplet
raduis. As shown in Figure (5), it is evident that, in the
high energy case, the mass flux has a positive correlation
with all selected droplet sizes. The vaporization rate
increases with a positive rate (8°Vy)/(30%) while the mass
flux increases with a negative rate (8°m)/(30”).

Temperature decay time

Figure (1) reveals that the water droplet temperture is
incresed for times greater then zero up to a maximu value
at the end of the pulse passage. Then, the droplet
temperture begins to decrease with a rate negatively
correlated to the droplet size. The time, required for the
droplet temperature to decay to a value T, very colse to
the ambient temperature, is defined as the temperature
decay time t;. This paremter is function of both the
maximum temperature rise and the droplet raduis. t, amy
be selected to equal AT,, where A is very close to unity.

Now, for small droplet sizes, 0<0.1 pm, one can
formulate an expression for the prameter t, . When o is
so small that one can neglect the conducting, kinetic, and
shrinkage energy terms, the energy balance equation, for
t > t,, can be written as

;i no’pcd—T+ 4nd’ mL = 0, (16)
3 dt

where m may be approximated, for small values of the
dimensionless variable X, to be in the following from

DLMY,
ORT,(1-Y,)

Substiute m from Eq.(17) into Eq.(16), using the

dimensionless variable X instead of T, we obtain
dX  3DL™MY,
o T e
dt  o’RT,(1-Y,)
For water droplet Eq.(18) can be integrated and rewitten

as

X = 0. (18)

X ty
gz_mn‘ fdt,

Xl X d b

ty = 25x10° &’ In %“-H,, (19)

Where X, is the dimensionless variable, and the maximum
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dimensionless variable ( X, = AT,/T,) can be obtained
by rewiting Eq.(18) for the time range 0 < t < t,.
Hence, we have

oCT. dx . 3DLMY X . o)
— —_— = al.
dt o® RT,(1-Y,)

For water droplets, integration of Eq.(20) yields the
following formula

X dx )

J 3X1_“7x) =0f dt,

8x10™al-
&

which gives the maximum dimensionless variable as
X, = 2.7x10°0%al [1-exp (-3x10"t,/0))]. 1)

The final dimensionless variable X, can be easily
obtained by using T; = AT,. This leads to
T, -
T,
Equations (22),(21), and (19) provide three equations
which determine the temperature decay time t; in terms
of the plotted radius, pulse length, and the beam intensity.
In Figure (6) we polled the variation of the normalized
temperature decay time (ty/t,) with the droplet raduis for
the selected values of al. The plotted results are obtained
using the numerical integration of the energy blance
equation, Eq.(4), under the condition of x,= A-1=10", It
is clear from Figure (6). that the parameter t; increases
for the larger droplet sizes. The rate (0ty/d0) is
positively correlated with the beam intensity.

= =A-1 (2)

X, =

CONCLUSION

In this paper, we have studied carefully the interaction
between the water droplets and a monochromatic pulsed
beam of electromagetic radiation. The couples nonlinear
differential equations describing the emergy and mass
conservation are numerically solved.

The results of the present work reveal that the second-
order solutions obtained in Ref.[1] are in agreement with
the present numerical solution for the condition 16> o* a
I(W/m) <1. The excellent agreement occured for the
condition o’al= 1 W/m.

The critical beam intensity, required to heat the droplet
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up to the boiling termperature, has a great dependence
upon the droplet size especially for the smaller droplet
radii. From the obtained results one can find that the
mass flux and the varporization rate are independent
parmeters. However, both are affected by the droplet size
and the beam intensity. The great effect of the droplet size
appears in the enerfgy case.
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Figure 6. Variations of the normalized temperature
decay time with droplet radius.

as mentioned, the rate of the droplet temperature decay
at t>t, depends greatly on the droplet size. The
temperature decay time is very large for the higher droplet
radii. It is found the samller droplet radii (<0.1 pm) have
approximatelt the same temperature decay time for both
the low and high energy case.

The present work suggests a number of extensions. First,
the nonequilibrium effects must be inluded for the case of
sufficiently large values of the quantity (o’al), where
surface equilibrium conditions are not achieved. Second,
the thdrodynamic effects are important to describe the
dynamics of intensely irradiated aerosols. In this case both
high-energy and short-time effects may be investigated.
Finally, one can consider the more gcneral problem of
beam propagahon in a poly-disperse size distribution
which require knowlege of the particle concentration per
unit volume, the particle-size distrbution function, and the

1 1
1,24 1l.62 2
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single-particle extinction coefficient.
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