SCREW CONVEYOR EQUIVALENT ROTATIONAL SURFACE AND ITS
OPTIMUM FORMING FOR MINIMUM PLASTIC DEFORMATION

Abdel Hamid I. Gomaa and Alaa H. Hamdy
Mechanical Power Engineering Department
Faculty of Engineering, Alexandria University
Alexandria, Egypt.

ABSTRACT

The problem of manufacturing screw shaped conveyors is discussed. A screw-equivalent rotational surface with
the same dimensional characteristics is found. The parameters of a cone shape are optimized to get minimum
plastic strain energy in forming the screw-equivalent rotational surface.

INTRODUCTION

Screw conveyors are widely used in material handling.
The problem of forming the screw shape from a metal
sheet has practically very high interest. The forming
methods used in practice cause high strain energy for the
material besides the lack of precision. These methods [1],
[2] depend mainly on forming an incomplete annulus
shape which has an inside and outside circumference
equaling the screw inside and outside helical length
respectively, in the same time the radial distance in the
screw'is equal to the difference between the inside and
outside radius of the annulus. Experience shows that these
methods have several disadvantages, which are obvious
from simple calculation of the areas of the helix surface
and annulus. The area of helix surface is smaller than that
of annulus, (specially when the difference between the
inside and outside diameter is large), which means that
the annulus plate should be deformed (compressed) in its
plane to obtain the helix shape, such deformation is
practically impossible.

In the following we find the exact rotational surface to
form one pitch of the helix, and then determine the
optimum cone shape which gives minimum strain energy
due to plastic deformation from conical to the exact
rotational surface.

SCREW-EQUIVALENT ROTATIONAL SURFACE

This work will be taken on two steps; the first concerns
with finding the rotational surface which is exactly
equivalent in dimensions (lengths, area, angles, ...) to the
screw surface and consequently gives the exact screw
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shape by simple bending. The second step is to find the
parameters of conical shape which minimize the plastic
strain necessary for getting the rotational surface.

The length and radius of curvature of the helix shown in
Figure (1) are calculated using parametric equation of
helix [3]; and given by,

9 = 202+’ & p = r+b%/r for one turn

where & is the length of turn of helix of radius r, p is the
radius of curvature of helix form, and b = pitch/2x.

be- hs 21b

Fi;m 1
To get the function which describes the equivalent
rotation surface, Figure (2), the following conditions are
considered:
i- The distant Ar between any two points 1,2 on the
generatrix; (p the curve generating the rotation surface
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by rotation about axis lying in the same plane as the
curve); is equal to the radial distance between two
similar points on the helical surface.

ii- The circumference of the circle generated by the
rotation of any point on the generatrix is equal to the
length of the helix generated by the motion of a
similar point on the helix surface at a constant radial
distance for one pitch of the helix.

iii- According to the two previous conditions, the similar
areas abcd on the two surfaces must be equals.

iv- The radius of curvature for the developed boundary

curves of any strip Ar on the helix must be equal to
that of the similar strip on the rotational surface.
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Figure 2.

For this last condition it must be noted that the forming
of a plate by simple bending perpendicular to its surface
is an easy operation, but forming a plate in the direction
of its surface is practically impossible operation. Thus the
radius of curvature p, Figure (2) will be measured in the

direction of tangent of Ar.
From the first condition, considering the infinitesimal

length dr as straight line portion; dr/p=dx/x or
p=x|dr/dx]. Considering the same radius of curvature for
each line on the helix surface at distant r from the helix
axis; condition iv thus;

p = r+b%/r; from which; x[dr/dx] = [PP+b%]/r (1)

Considering the same length for both helical and
rotational surface; (condition ii); we conclude;

2x = & = 22 +b or ¥ = P+b? 1)
From equations (1) and (2), we get;

dr/dx = x/Wb% ®)

The relation between dx, dy, dr, is given by;
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dy/dx = [(dr/dx)*>-1]"/% and equation (3) may thus take
the form dy/dx = [x*/(x*-b%)-1]/%; from which by direct
integration, y = bln[x+yx"-b® ] + C, where C is an
integration constant obtained by substitution of boundary
conditions; at y=0 (r=0), x=%b; thus C=-b(Inb); and the
equation describes the generatrix of the rotational surface
will be;

y = bin[(x/b) +V(x/b)*1 | ©)

The generatrix of the surface of rotation obtained from
equation (4) has the same arc length and radius of
curvature of the developed boundary curve at any point;
measured in the direction of tangent of the surface exactly
as those of the helix.

OPTIMUM CONE DIMENSIONS TO OBTAIN THE
ROTATIONAL SURFACE

To obtain rotational surface in practice from a plate, it
is obvious that the nearest shape to begin with is a cone.
Our problem is to find the optimum dimensions of such
cone to minimize the plastic deformation in forming the
rotational surface equivalent to the helix.

According to the perpendicular strain, the length
between two points (0,1) on the generatrix of the cone
before deformation, Figure (4), must differ from the
length of the rotational surface between the points (0,1)
after deformation Figure (3).

Y
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The radius of rotational surface at point 1 will be;

% = rj+b’ (5)

Figure 4.

The relation between an infinitesimal length ds on the
generatrix of the cone shape and the deformed length dr
on the generatrix of the rotational surface could be written
as [4];

€g, = In[dr/ds] (©)

where €, is the longitudinal strain in r direction.

Assuming that the material will behave as an ideal
plastic material, and thus obeys Levy-Mises relation, and
considering that our case as a unidirectional stress state
(all surface at xp,X,%;,X, are free surfaces), then we can
write, [5];

€gr = €o/2 = -(1/2)In[X/x]

where €, is the strain in x direction, and equation (6) will
be;

€gy = (1/2)€, = «(1/2)n[X/x] = In[dr/ds]
from which ds = dryX/x . Substituting ds = dx/sina and

separation of variables gives;
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Substitution by equation (3) in the right hand side and
direct integration gives;

X
% = i+ 3/Dsinaf | PRARTS a0 ()
Xg

Equation (7) gives the radius x; of the cone at point (1)
before deformation.

To minimize the plastic strain; it will be reasonable to
find the cone parameters such that the plastic strain
energy necessary to deform the conical surface to the
specified helix-equivalent rotational surface will be

minimum.
PLASTIC STRAIN ENERGY CALCULATIONS

The strain energy necessary to deform an elementary
annular shape of thickness t and length dr; from cone
radius x; to rotational surface radius X; will be; Figure
©F

X1 X
AE = [ 2aF,dX] = [ 2n0,0dXdr
Ay 5

where F| is the circumferential force in the annulus at a
position Xj.
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Figure 5.

For the unidirectional stress state of the Levy-Mises
ideal plastic material, we have;

de, = [de folo, or o, = o[de,/de]
where dé is the incremental strain invariant, o the stress
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invariant, and de,, 0, are the incremental strain and the
stress in direction x respectively. Also;

d = [2/3)dE+dE+dD)] = de,

And considering that the stress-strain relation of the
material will take the form 6 = k|é |", where k and are
experimental constants.

Thus the strain energy equation for the infinitesimal
annulus will take the form;

X, X
AE = f 2ntdX k[E"dr = yz::kt{ln[X/x]}"dxldr,
X X

and the total plastic strain energy necessary to form the
rotational surface form the cone will be;

R X
E= [ f 2kt {In[X /x]}2dXdr ®)
To X

where ry and R are the inner and outer radii of the helix
respectively.

The variation of thickness t is small compared with the
variations in the plane direction, thus t could be
considered constant in the above integration. Also the
parameter x which represent the cone radius at a point is
constant in the integration with respect to X in equation
(8).

Equation (8) represent the plastic strain energy needed
to form the specified helix-equivalent rotational surface
from a cone. The integration of such equation could be
calculated numerically and thus the strain energy for a
specified thickness and specified material will take the
form,;

E = fn[a, x4, b, 1y, R]

Hence, for a specified helix, (i.e. known b, ry, R) the
optimum values of the two parameters @, x; defining the
cone which minimize the plastic strain energy could be
obtained.

NUMERICAL EXAMPLE

For a specified screw conveyor has a helix with inner
radius ry=45mm and outer radius R=114mm and
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b=36.3mm (the pitch is equal to the outer diameter) the
plastic strain energy, equation (8), is calculated
numerically; (using the numerical calculations of equations
(4) and (7) as a function of the cone parameters x,, a.
An optimization procedure using the alternating one
dimensional search technique [6] is conducted to get the
parameters X;, @ accompanied by the minimum plastic
strain energy. For the example mentioned above these
values are, a=74.1" and x3=>53.4mm.

Figure (6) shows a tracing for the rotational surface;
equation (4), and the optimum cone obtained by the
previous parameters.
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Figure 6.

CONCLUSION

1- An screw-equivalent rotational surface with the same
radial distances, areas radius of curvature at a point is
obtained.

2- The optimum cone dimensions which minimize the
strain energy required to form the rotational surface
are calculated.
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