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ABSTRACT

An approximate solution of the nonlinear differential equation; i-a?u® = B, is considered where a and f are
constants. The approximate solution obtained is shown to correspond to the exact one for a particular set of
initial conditions. An example in the form of x+ 3x>-6x+2 = 0 which can be transformed to the above equation

is studied.
INTRODUCTION

Many physical phenomena in engineering and technology
are modelled by seccond-order nonlinear differential
equations [1-3]. In order to analyse the behaviour of the
physical situations, the solutions of the differential
equations, which are in general difficult to obtain in
nonlinear cases, are needed. However, there are methods
to obtain approximate solutions of such nonlinear
differential equation [1-3]. For example consider the cases
when the differential equation takes the form,

x+f(x) = 0, (° = d/dv €Y
Such problems have been extensively studied, for example
as in [4-6], where f(x) is an odd function. Meanwhile the
case, where f(x) is neither even nor odd, (as in the case of
asymmetric oscillations), Howard [7] and Bernard [8(i),
(i1)] have changed f(x) into two fictive oscillators, each of
them is symmetric, and by this way they obtained the
periodic time of oscillation for this case.

Peters [9] and Usher [10] have obtained some
approximate solution to the differential equation x+ w’x =
-ax?, subject to the initial conditions x(0) = A, x(0) = 0.
But their approximate solution is not reduced to the exact
one namely, x(t) = -w’/a for the special case when
A=-0°/a. Such a difficulty has been eliminated by Shidfar
and Sadeghi [11] using different approach.

Thandapani [6] used the method of Shidfar and Sedeghi
[11] to obtain an approximate solution of the following
nonlinear equations [13],

x+a’ = px* )
x+ax = -p° 3)

with initial conditions

x(0) = A and x(0) = 0 @)

In the present paper, we use the method described in
[12] and [13] to obtain the approximate solution of the
inharmonic motion equation (Bernard [8(1)]), given by

X+3x%-6x+2 = 0 (5-a)
with initial conditions
x(0) = A and x(0) = 0 (5-b)

which has the form of equation (1), where f(x) = 3%
6x+2. Using a special transformation which will be
described later, equation (5) can be rewritten in the
following form;

X+ [x+€G(Xx)] = 0 (6)

where € is a small parameter.
To arrive at equation (6), one can apply the method

illustrated in [8(1), (ii)], by finding the roots of f(x), one
gets X, = 1 +1/y3, then translating f(x) to f(x+xp),
equation (5) reduces to the from of equation (6) as
follows:

x+2y/3 [x+ (/3 /2] = 0 9

The solution of equation (7) has been studied using
approximate methods in [8] and using exact methods in [7-
8].

In this paper, we are interested to find the series
solution of equation (5) which, can be written in the form

i-oa?u® = B (8-a)
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MO =t vy g (8-)
where a and f§ are constants, then by substituting
x = -u+l 9

into equation (5), we obtain

i-3u? = -1 (10-a)
with
u(0) = -A+1, d(0) = 0 (10-b)

SERIES SOLUTION

It is required to solve the nonlinear differential equations
of the type given in equation (2), (3) or (8). Since the type
given by equation (8) has not been previously considered,
we concentrate our investigation on this equation. We seek
solution of the form

(o]

ut) = E C,sin"at; n integer (11)
n=0
where the coefficients C, n = 0, 1, 2, ..., are constants to
be determined.

Substituting the series (11) into (8-b), we get Cy = U,
It can be shown that C; = 0 from equations (8-b), and
(11). Substituting (11) into the left hand side of equation
(8-a) and equating the sum of the coefficients of each
sin"at, n = 0, 1, 2, .., to zero, we obtain the set of
coefficients C;, n = 0, 1, 2, ....

It is interesting to note that the series solution (11) is
absolutely convergent for all t and consequently it
converges for all values of t. This conclusion is given in
[12].

EXAMPLE

In this section, we determine the series solution of
equation (5-a) with initial conditions (5-b), but in its form
of equations (10-a) and (10-b). We seek a series solution
for equation (10-a) in the form

U@ = C0+C1sim/§ t+(‘,zsin2\/§ t
+Cysin’y/3 t+C,sin*y/3 t+... 12)
where Cy, C;, G, G, C,,

determined.
From equation (12), we can get the following;

U(t) = C,/3 cosy/3 t+C,2y/3 siny/3 teosy/3 t

.., are constants to be

+C3.3y/3 sin®/3 teosy/3 t
+Cy 43 sin’y/3 teosy/3 t+... 1)
U(1) = -3C;siny/3 t+6C,(1-2sin%y/3 1)
+9C,siny/3 1(2-3sin%y/3 1)
+12C,sin®y/3 t(3-4sin?y/3 t) + .. (14)
UX(0) = Ch+(CCy+ CiCo)siny/3 t+(CoCy+ C +C, 0y
sin?y/3 t+(CyCy+ C;Cy+ C,C, +CiC)sin®y/3 1
+(CyCy+CyC3+CE+CyCy
+C,Csin*y3 t+... (15)
Substituting equations (14) and (15) into (10-a) and
using equation (13) in the initial conditions (10-b), we
conclude that
C, =C3=0,Cy = -A+1; C, = (3A%6A+2)/A;
C, = (3A%6A +2)(3-A)/36. (16)
The required solution of equation (5) can be obtained
though equations (9), (12) and (16), and it has the
following from;
(1) = A-[(3A%-6+2)/6]sin’/3 t
+[(3A%-6A +2)(A-3)/36]siny3 t+... an

The solution for special cases A = 1, 2, 3, 4, 5, 6, and
1+1/ \/5 has the following forms.

x(t) = 1+(1/6)sin’y/3 t+(1/18)sin’y/3 t+.. (18)
xX(t) = 2-(1/3)sin?/3 t-(1/18)sin*y3 t+ .. (19)
x(t) = 3-(11/6)sin’y/3 t+... )
x(t) = 4-(13/3)sin®/3 t+(13/18)sin*/3 1 ... Q@)
x(t) = 5-(47/6)sin%/3 t+(47/18)sin*y3 t+... @)
x(t) = 6-(74/6)sin’/3 t+(74/12)sin*y/3 t+.. @)
xt) = 1+1//3 )
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We observe that the coefficients C,, Cy, C, ... vanish for 6
A=1+1/\/§.Thereforex(t)=1+1/\/§ forA=1+1/\/§ . b -

and x(t) = 1-1/\/; for A = 1—1/[3_.

Hence the solution of the differential equation (5)
corresponds to the exact one for these particular initial
conditions, and that is in full agreement with the work of

Bernard [8(i), (i1)].

Approximate solutions and results for different values of
initial conditions, equations (18-24), are give in Figures

M, @, . (D).
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CONCLUSION

From the above investigation, one concludes that the
solution of the nonlinear differential equation (5) is
periodic (symmetric), although the function f(x) = 3%-
6x+2 in equation (5-a) is asymmetric.
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