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ABSTRACT

This paper is presented according to the mathematical difficulties in treating some physical problems, related
to any dynamic system such as, for example in the electric machine dynamics. The use of i-operator in this
respect makes some difficulties in understanding the physical behaviour of the forward and backward wave
components under hunting condition, applied to the system. This may cause a rigorous lack between the work
of some authors, incorrect physical results and ambiguity. To avoid the obscurities of existing mathematical

treatments, the algebra is developed for a true 90° forward time operator that works with real variables and
with multiple frequencies. It is claimed that a much clearer understanding of all matters relating to forward f

and backward b variables in the system.
INTRODUCTION

In any dynamical system, when studying the
characteristics of the forward and backward wave
components, under a constant amplitude hunting
condition, the complex i(=+(1)-operator was used.
Analysis has been developed [1,3 and 9] for finding these
components by a direct transformation of the perturbation
variables between the forward and backward f, b reference
frame and the reference frame which represents the
system by time-invariant coefficient under hunting
condition.

However, it should be appreciated that the f and b waves
can possibly be viewed with respect to any time-varying
reference frame. Also it is interesting to note that
analytical expressions for the individual f and b
components of some particular dynamic coefficients, which
represent the behaviour of the system under hunting
condition, are not given in any known references. It is
believed that these restrictions have been introduced partly
because it is difficult to rigorously derive f, b equations in
alternative reference frames using the i-operator, and
partly because f, b components of the hunting coefficients
based on this avenue of enquiry turn out to be physically
incorrect, and indeed ambiguous, varying with the chosen
reference frame.

In this paper, an introduction to a new k-operator
(replacing 1) is developed and its properties are
investigated, k is a 90° forward operator, which operates
on real functions. This operator is physically
understandable in the transformation equations, where i is

not, and it enables the process of deriving f and b
equations to be rigorously understood in any reference
frame.

THE k-OPERATOR

In developing f, b equations for perturbation variables
under hunting condition, a transformation matrix with i
notation has been used [2,4]. This matrix has been defined
to be available to transform either (or both) the
perturbation or the steady-state variables between hunting
equations and f,b components (or vice versa by the use of
inverse). It is stressed that the quantity i in this matrix is
allowed to operate upon both the perturbation and the
steady-state variables, although f and b components of the
steady-state variables, of zero frequency, are physically
meaningless. In case, the steady-state variables have no
time dependence and it is impossible to say whether they
represent a forward wave, or a backward wave, or some
combination of the two.

The i notation used earlier, viewed as a forward operator
for a phaser variable, is strictly available to operate only
on the perturbation variables expressed in the time-
invariant reference frame, in which they contain only one

frequency (perturbation frequency p). f and b components
can then be derived from the perturbation equations, with

p=ip, where p=d/dt is the differential operator. But the
i operator is inadequate for developing those components

from system equations expressed in any time-varying
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reference frame which contains multiple frequencies in its
perturbation variables.

To overcome this problem, a new operator to replace i
is proposed, denoted by k, which is available for the
perturbation variables (only of any dynamic system
expressed in any reference frame. This operator proves to
be very convenient for use in a generalized transformation
matrix K, as it can operate on trigonometric functions of
one or more frequencies. It is mathematically defined as:

differential time operator

k
frequency modules

= p =
lo]
COMPARISON BETWEEN i AND k

The operator k has similar characteristics to i, but i is
for functions while k operates only on real functions.
Consideration shows that i is 90° forward for positive
frequency but 90° backward with negative frequency (an
important point which is not generally appreciated [1,8],
whereas k is 90° forward with either positive or negative
frequency. A comparison between i and k is given in the
following examples (1) and (2), assuming coswt and sinwt
are two trigonometric functions of frequency w, where
w>0.

The operator works on a complex function and the
instantaneous values before and after the operation are
conventionally obtained from the real parts. Thus the
expressions before the colon are in complex form, and
after the colon, the implied results for instantaneous
variables (by taking the real parts) are given, before and
after the 1 operation.
it

-t

ie : coswt — -sinwt, ie” : coswt — sinwt

0. sinwt — -coswt or sinwt — cosot

iie

i(ie®"): sinwt — -coswt 1)

Similarly for the k-operator we have:
k(coswt): coswt — -sinwt, k(cos(-wt)): coswt — -sinwt
k(sinwt): sinot — coswt, k(sin(-ot): sinot — coswt (2)
The difference between the two equation sets of (1) and
(2) lies firstly in their handling of negative frequency; it is

seen that i with a negative frequency becomes effectively

a backward 90° operator, whereas k with negative
frequency remains effectively a forward 90° operator. Also,

of course, i must operate on a complex operand in the
form ¢!, whereas k is equipped to operate on red
variables which naturally occur in transforming spatidl
reference frames.

It follows that with the new operator k, with an
operand whose frequency is the difference of tw
(positive) frequencies, the transformed result depends on
which frequency is the larger. Whilst that property i
mathematically awkward (though it can be handled quit
readily in practice), it does express the true situation. It
reveals in transformation between spatial reference frames,
for example, how a particular wave which is forward-
moving relative to one frame may become backward:
moving relative to another.

PROPERTIES OF k-OPERATOR

This section explores the previous property and tabulates
important algebraic results for the k-operator in this
connection (property 7). Also, rules are developed by
which k can be used to operate on product terms of
several different frequencies (property 8), avoiding the
need to first multiply out these terms into single frequency
components.

k has the following properties, by considering operation
on the general, simple trigonometric function:
X =acos(xwt+¢), where w>0.

1) k=90° forward, -k=1/k=90" backward. Thus:
k(cos(wt+¢)) = cos(w(t+n/2w)+¢) = -sin(wt+¢)

-k(cos(wt+¢)) = cos(w(t-n/2w)+¢) = sin(wt+¢)

k(sin(-ot+¢)) = sin(-0(t+7/20)+¢@) = -cos(wt-¢)

-k(sin(-ot+¢)) = sin(-0(t-n/20)+¢)

-cos(wt-¢)
k(cos(-wt+¢)) = -sin(wt-¢)-k(cos(-wt+¢)) = sin(wt-¢)
k(sin(wt+¢)) = cos(wt+@)-k(sin(wt+¢)) = -cos(wt+¢)

Clearly, operator k always causes the right-hand side to
lead (and -k causes it to lag) the operand of the left-
hand side by 90° in time, regardless of the sign of
frequency. (note that i, with complex variables, does
not possess this property).

2) K*=-1, K’=-k, k*=1, k+(-k)=0 and k(-k)=1
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3) If p=d/dt, then pk=kp, i.e. k and p are commutative.
4) k(cX)=ck(X), where c is constant,

5) If X=acoswt and Y=bsinft are two different sxmple
functions each of one frequency but the respective

frequencies *w and *B may be different, then
k(X+Y)=k(X)+k(Y).

6) If n=tanf, then (1+nk)/y/1 +n’ is the forward operator

by angle 6.
(if =0, the operator is 1 (n=0); if 6=90°, the operator
is k (n=29)).

7 If ©>0, >0 and t is the time, we have some
important properties for difference frequencies, which
depend on the relative magnitude of w and B.

for o> p
) o _ {cos(a)-ﬁ)t
(sin(w-p)t)= I w-B ICOS( 2 -cos(w-p)t for w<p

cos(w-p)t for w>p

cos(w-p)t for w<p

k(sin(ﬁ«o)t)Tg—_*a‘j—lcos(p«o)t ={

k(cos(w-p)t)= I_Jg_l(_sm( )= {s'in(w-p)t for 0>p

sin(w-p)t for w<p

k(cos(B-)t) = I_l%wl(-sm(p o)t)= {-sin(arﬂ)t for 0>p

sin(w-p)t for w<p
Yk(X) for o>p

8) k(XY) = =
& {Xk(Y) for w<p

which is proved as follows:

k(XY) = k(abcoswtsinft) = abk(sin(f + 0)t + sin(-0)t) /2
= ab(cos(f +)t+cos(f-w)t)/2

coswtcosft for w<p, equals Xk(Y)

abk(sin(w + p)t-sin(w@-p)t) /2

ab(cos(o + p)t-cos(w-p)t) /2

-sinotsinft for w> B, equals Yk(X).

or

Note, in 7 and 8 above, the results are indeterminate for
w=p. In this case the difference p-w is zero and the
function turns out to be constant (steady-state with zero

frequency). k does not operate on constant.

TRANSFORMATION MATRIX

The transformation matrix K is defined for two
perturbation variables, coinciding on two axes at right
angle, and for f, b components [6,7 and 9], expressed in
any reference frame, as follows:

; the inverse is

K!-= 3)

By introducing the matrix K which is K with all k terms
reversed in sign (similar to the complex conjugate), that is:

the following properties are satisfied.
®)'=xy =KT; ®)'=K; K" =K"; ®K)'=K(9)
where T denotes transposition.

The use of the transformation matrix is important to
study f, b wave components in any dynamic system. This
matter is pursued in the next sections.

POWER TRANSFORMATION

It has long been appreciated [5] that the
electromechanical conversion of energy (or power) is a
concept of fundamental physical importance in regard to
dynamic studies based on perturbation variables. With all
systems excited by cyclic variables, it is important to
distinguish between instantaneous, time-average and
oscillatory power flows. If for example the power is the
product between two variables in the system (u,v) input,
and the instantaneous values of these two components

represent sinusoidal oscillation at frequency w, then the
complex form of u and v are:
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A A g
u=ue? v= vel@#)

where 0 and v are the peak values, and ¢ is the phase
angle between the phasor u and phasor v. Therefore

the time-average power = Re(u‘v)/Z = (Uvcos $)/2,

where * indicates the complex conjugate.
Oscillatory power is given by, Re(uv)/2, that is

Oscill. power = %Re(ﬁseiwtei(wt¢)) = }uvcos(2ot-g),
and the total instantaneous power by:
Re(u)Re(v) = uvecoswtcos(wt-¢) = $uv(coss + cos(2ot-g)).

Clearly, in this case the instantaneous power = time-
average power +the oscillatory power.

The same results (principally for time-average power) for
complex variables are reflected in equated in equations for
real variables using the k-operator. This is appreciated
from general vectors in complex form U and V, where
(UT‘)V = UT(V ‘), and introduce an important general
principle for k-operator with real functions X and Y. It is
immediately seen that: (kX)Y),, = (X(-kY)),,, because
advancing the phase of X relative to Y is equivalent to
retarding the phase Y relative to X, so far as time-average
effects are concerned. This can be generalized for any f(k)
as follows:

({()X)Y),y = X(ECKY))gy ®

Equation (5) is the necessary result for exploring power-
invariant transformations with the k-operator. It shows the
way in which the k-operator can be detached from X and
attached to Y, or vice versa, if only average power is
concerned. But it should be appreciated that the
instantaneous values of the products in (5) do not obey
the same law. This means that transformations which
maintain time-average power invariant do not in general
maintain instantaneous power invariant; this statement
applied equally to complex phaser transformations, as to
real transformations with the k-operator, though it is
frequently not appreciated.

Power-invariant Transformation

We can express power relationships between two general
variables in vector form X and Y in both two axis frame
and f, b frame as follows:

P = the time-average power (XTY)av, where
X = KXg and Y = KYp, so that:

P = ((KXg) (KYp))ay = X1 (K KYp)),, (from (5))

and substituting for K" from (4), therefore:

P = XpK'KYp)), = XpYn)a 6)

Oscillatory Transformation

The oscillatory power for real variables, according to the
definition of the complex variables, is:

1 0
j T. T
X Y=(KXg) KYp=Xp, Yo M
Example

Letx=[x‘] andY=[yl
% ¥2
Find out the oscillatory and time-average power
transformation, then deduce the instantaneous power
transformation.

] be two real vectors.

The untransformed power is Xty = X1y1 1%y,

but X = KXg, Y = KYp, where

SR ESNESH
v} X A
Therefore,
X = GHRIN2 % = k)2
= G N2 v = KOrN2

The oscillatory power = 3 (x¢+%,)(¥e+Yp)
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/2% %) Y Yo) = X¥o + oY

Time average power = xTy = e+ %) (Ve + V)

/2 %) G Ye) = XY+ Xy
Instantaneous power = (X+X')TY = (X +%) Vet ¥p)
= time-average + oscillatory powers.

Let the system be perturbed at frequency f and Y
oscillates, so that: y, =asinfit, y,=bsinft. Let X=DY, as
viewed with respect to time-varying reference frame of
frequency w, where:

[ cosot  -sinwt
D - . Find X, Y, and Xp.

| sinwt  coswt

[ acoswt-bsinot
X = sinft

| asinot + bcoswt

1 1 k a
Yo = K'Y =0 sinft

ﬁl-kb

1 asinft + bcosft

=

asinft- bcosfit
1 1 k acoswt- bsinwt
Xg = K'X =T sinft
2
1 -k asinot + bcoswt
Xg 1 asin(f + @)t +beos(f +w)t
=T for f>w
%o 4 0
acosotsinft-bsinwtsinft
or =4¢2

0

1 | asin(@+ p)t+bcos(w+ p)t-asin(w-p)t-beos(w-H)t
KE

for f<w

In case of f<w we found x,=0, while x; is the sum of
both x;+x, of the case f>w. This indicates that the

backward wave in that frame exists when f>w, and
becomes forward when <.

CONCLUSION

It is believed that, in the process of transformations
between reference frames, use of the i-operator in
conjunction with the complex variables is an encumbrance
that hinders clear understanding and invites lack of rigour.

A new 'k’ operator is introduced, which is the 90°
forward operator for real variables. The algebra of this

operator is developed, and it is seen to work conveniently
and clearly with variables of multiple frequencies. By its
use, for example, it is seen for the first time that a
‘backward’ wave, as viewed in one spatial reference
frame, becomes a ‘'forward’ wave in another, as would be
physically expected; but i-operator is faulty in this respect.
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