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ABSTRACT

A finite element numerical model has been designed in order to study the characteristics of steady state
groundwater flow in the neighbourhood of deep gravity wells . Particular attention is paid to the flow pattern
close to the well where the slope of the free surface is steep and the vertical velocity components generate a
surface of seepage. The results are presented graphically in chart form suitable for practical use and are
compared with results that can be obtained using non-numerical methods.

NOMENCLATURE

>

radial area of a domain

{f}  element force vector

{F}  global force vector

by height of the seepage face

h, water depth in the well

H, original water depth in the aquifer
k coefficient of permeability

k]  element stiffness matrix

K] global stiffness matrix of a domain
n number of nodes in element

N; shape function

q, rate of discharge per unit length

Q well discharge

I, well radius

R radius of influence

spsg  line boundary on which boundary conditions types
(A) and (B) are imposed respectively

S part of the boundary on which boundary

condition type (B) is imposed

v volume

) potential head

o prescribed values of head

{0°}  vector of unknown of element

{#}  global vector of unknowns to be determined
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INTRODUCTION

The analysis of groundwater flow into gravity wells in
unconfined aquifers is complicated because an important
boundary condition, the position of the free surface, is
initially unknown and has to be determined by an iterative
process. A further complication arises from the occurrence
of the seepage face , which always exists around the well
casing and screen in unconfined aquifers, even if head
losses due to entry of water into the well are ignored (see
Figure (1)). The groundwater flow intersects the well at
some distance above the water level in the well and
emerges from the porous medium into the internal space,
trickling down along the seepage face. The length of this
face is unknown at the start of analysis and so is the shape
of the free surface, particularly the point at which it joins
the water table.

Dupuit [12] studied the regime of flow into a gravity well
by neglecting the seepage face height at the well
Consequently, he derived the following equation:

Q = nk (Hb,)/{In(Ry/r,)} (1)
or
Q = nk (H-h%)/{ln(R /r)} @
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Figure 1. Formulation of the seepage at a pumped
well in an unconfined aquifer.

where H_ is the original water depth in the aquifer, h, is
the water depth in the well, R is the radius of influence,
r,, is the well radius and h is the water depth at radial
distance r from the well. Equations (1) and (2) are used
to obtain the well discharge and the profile of the free
surface respectively. However, there are some objections
to the Dupuit solution because; (1) it does not give the
proper shape of the free surface in the area adjacent to
the well, (2) it fails to give a flux value when h approaches
zero, making the cross sectional area of flow at the well
circumference zero, (3) it is based on the assumption that
the ground water flow takes place in the horizontal planes,
whereas in the immediate vicinity of the well a strong
curvature of the flow lines is noticeable. Kashef [8] derived
algebraic equations to obtain the position of the free
surface based on the analysis of the neutral hydraulic
forces acting on vertical prisms of the saturated soil.
However according to Soliman [14] the capillary fringe,
which was neglected by Kashef, should be taken into
account.

Hansen [6] and Zee et al [17] have obtained different
relationships to determine the seepage face height
experimentally. However, their results are suitable for
shallow aquifers rather than deep ones. Meanwhile some
others, such as Hall [5] and Babbitt [2] were based on
small ranges of the design variables.

Boreli [3], Kashef [9] and Rushton [13] applied the finite
difference method to study the form of the free surface in
the neighbourhood of the well. Taylor and Brown [15]
used the finite element method (FEM) to investigate two
dimensional study state ﬂpw through dams, They have
presented an iterative approach to obtain the position the
free surface. Although [7], [16], [4] and [10] approached
the free surface flow problems successfully using the FEM
they did not obtain expressions or relatlonshaps assocxa;cd
with the determination of the ‘seepage ‘face’ helght, free
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surface profile or discharge of a gravity well.

The main objective of the present study is to attempt to
confirm the relationship between the well hydraulic
parameters, in the steady state, by the use of the finite
element method. These are the position of the fre
surface, the seepage face height the quantity of discharge.
In addition, the determination of the velocity distribution
pattern near the well will also be investigated.

ASSUMPTIONS

In order to simplify the numerical study, certain
assumptions are introduced. These are; (1) the well is
pumped at a constant rate and the water bearing medium
is assumed to be homogeneous and isotropic; (2) the flow
is laminar and obeys the Darcy law; (3) the free surface
is maintained at a constant level at a finite distance away
from the well at radial distance equal to radius of
influence; (4) the soil is fully saturated and the
compressibility of both water and soil are neglected; (5)
the effect of capillary flow in the zone above the free
surface is neglected; (6) the well penetration is full and
the head losses through both the well screen and the
casing are neglected.

THEORETICAL CONSIDERATIONS

The general governing partial differential equation for
steady state flow in an anisotropic and homogeneous porus
continuum can be described as

d oo 8 o d 9Py -

where @ is the potentxal head and k, , ky and ky are the
permeability coefficients in the cartesian x, y and z axis
respectively. Since the domain and the flow are
symmetrical about the well center line axis the cartesian
coordinates (x, y and z) in equation (3) are transformed
to cylindrical coordinates (r, z). Then the appropriate flow
equation is
19 Lo s A
e @
where r and z are the radial and axial coordinates
respectively, k; and k; are the permeability coefficients in
r and z directions respectively, ... Lodivooin
For 1sotrop1c soil k.=k,=k,, thy,s,qqggtpp 4 beeomes»

adi éf anvgnliir B0 wisev ksdoly L
=0
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The following two boundary conditions for equation (5)

are generally encountered in groundwater flow:

(A) Specified head boundary condition, where the head
to be specified at a nodal point on the boundary S,

® =0, 6)

where @ is the potential head and (I) is the
prescribed head.

(B) Specified flux boundary, where a specified amount of
flux q, flows into the body, per unit length of the

boundary Sg

k%%’_+qo=0 @)

where d/0n is the outward pointing normal derivative

to the boundary and q_, is specified discharge into the
flow domain per unit length of the boundary.

By applying the Galerkin residual approach [11] to
equations (5) and (7).

19 od d ad ;
il {?HF(kr ) gk 32—)} N Y
k 9P yN. dS’ =
s f @+ k ZyN a5 -0 ®
in which N; is the shape function. It is appropriate to take

dV = 2ardr, dz = 2nrdA and dS’= 27rdS 9

where V is the axisymmetric volume and Spdenotes the
part of the boundary on which boundary condition type

(B) applies.
Substituting from equation (9) in equation (8) and
applying the Green-Gauss theorem; then

oN; 6<I> oN; 30
SAf'Bx_Nkrds o G+ 3 A
s [agNids =0 (10)
B

The unknown head, ®, in equation (10) may be
approximated as [18]

n

In which @, is the nodal values of @, where all or some of
the parameters are unknown. Substituting for @, from
equation (11) in equation (10), (see [11]), we obtain

ON; ON.

- (ON; oN.
Afk’j;(ﬁ"# b o
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=Xi'Squo'NidS (12)
where A = area of the domain
n
. oN.
X, = SA'{ N, krjgl# ®, ds (13)

n = number of nodes in the element.
Equation (12) can be expressed in matrix form as
(k] {®°} = {f}} (14)

in which the element stiffness matrix [k°] and force vector
{f°} are defined by

- f(aN dN; _ ON; 9N,

e o

=4 [ 4o, ds (16)

The term X, in equations (12) and (16) represents the
flow at each nodal point associated with the prescribed
head values along the boundary S,. The previous
procedure to obtain equation (14) is repeated for all the
elements in the domain. Then all the equations are
combined into a set of simultaneous equations

[K{®} = {F} 17

where [K] is the global stiffness matrix, {®} is the global
vector of unknown head to be determined and {F} is the
global nodal force vector. From equation (17), the final
solution can be obtained after applying the boundary
conditions.

BOUNDARY CONDITIONS
Referring to the geometry of the model in Figure (2),

the boundary conditions associated with the flow towards
a gravity well are as follows:

Figure 2. Geometry of the gravity well - aquifer
configuration.

C 47



WHITE et al.: A Finite Element Study of Pumping From Gravity Well

Impervious boundary:

Along the surface AB, 9® =0 18
ong the surface o (18)

Water boundaries:

These constitute the faces BC and AE. The potential

head, @, along them equal to the elevation of the water
face above the datum

® = H, (along BC), ® = h, (along AE) (19)
Phreatic surface:

Along CD the total head equal the elevation head

® = z (along CD) (20)

In addition, the flow across this boundary is zero, i.e.,

0® - o (along CD) (21)

On
Seepage face:

At which the pressure is atmospheric

® = z (along CD) (22)

PROCEDURE

In order to carry out the previous finite element
computation steps, a finite element program, LUSAS [1],
at University of London Computer Center has been
utilised. Since the exact position of the free surface is
initially unknown, the Taylor and Brown [15] iterative
process has been followed herein.

MODEL DIMENSIONS

Values of the original water depth in the aquifer, H_,
and the well radius, r_, were chosen equal to be 50.0 and
0.20m respectively. A wide range of the radius of
influence, R, (100-1000m) has been chosen. For each
value of R, different values of the drawdown ratio
(h,/H,=08, 06, 04, 02, 00) were studied. The
permeability coefficient of the soil, k, was chosen equal to
0.001m/sec. Figure (3) shows the finite element mesh
using axisymmetric triangular elements. For each value of
R, and h, /H_, the mesh was modified to meet the new
dimensions of the model by changing the element size.
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Figure 3. Finite element mesh (Axisymmetric
elements).

RESULTS

Free surface

Figure (4) shows the profile of the free surface obtained
for R,/r,=500 and h,/H,=0.0. Curves plotted from the
equations proposed by Boreli [11], Dupuit [12], Babbitt [2]
and Hall [5] are also shown in Figure (4). Generally, it
can be seen from this figure that the FEM results agree
well with those obtained by Boreli and Babbitt in
particular, and the discrepancy between them does nol
exceed 0.5% at a radial distance (r=0.1 H,). Comparison
between the FEM and the Dupuit results shows that the
Dupuit equation gives reasonably accurate results of the
free surface profile at distance from the well greater than
one half the original saturated depth of permeabl
stratum. However, the free surface is situated at a higher
level than that obtained from the Dupuit’s formula at
distance less than 0.5 H,. It can also be seen from Figure
(4) that there are large deviations between the profile of
the free surface obtained by Hall and other profiles |
obtained by the FEM, Boreli and Babbitt. This is mainly
due to the unsaturated flow and capillary effects were ‘
taken into account in the derivation of the Hall formula |
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Figure 4. Comparison between the FEM and other |
methods to determine the profile of the free surface

(R,=100m, r,=2m, H = 50m, h,=0.0m).
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Scepage face Discharge

Figure (5) shows the variation of (hg-h,)/H_ and R /H,
for various values of h,/H_, where hg represents the
scepage face height. It can be seen that the seepage face
(h-h,) is directly proportional to the drawdown ratio
b/H, and reaches a maximum as h,/H =00.
Meanwhile, it may be pointed out that the height of the
scepage face, hy, is bigger than half the original water
depth. This means that it is impossible to lower the water
level in an unconfined aquifer by more than 0.5 H, .A
comparison between the FEM, Babbitt [2] and Boreli [3]
for different values of hy,/H, is shown in Figure (6). It
can be seen that a good agreement is noticed between the
FEM and Boreli results compared to Babbitt’s ones. This
may be attributed to the fact that in the electric analogy
study by Babbitt, the wedge which represented the well
was very thin and any small cracks or lack of homogeneity
as well as improper electrode contact will affect the
accuracy of results in the region near the well.

h/E - 0.0

0.20

[ — Al R 8.9

0.0 't i {'
1

Log i€ (]
e/

Figure 5. Relationship between the height of the
seepage face, hg, and h,, H,, R, (H,=50m, r,,=.2m).
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Figure 6. Comparison between the FEM and others
for determining the height of the seepage face.
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Figure (7) shows the variation of well discharge Q and
other parameters. A comparison between the FEM and
the Dupuit formula is also shown in Figure (7). It can be
seen that the results of both methods converge at small
drawdown and diverge with the increase of the drawdown
until maximum divergence is noticed at a maximum
drawdown (h,,/H,=0.0). This is attributed to the Dupuit
assumption, where horizontal flow is assumed near the
well and the vertical velocity near the well is ignored.
However, the error in applying the Dupuit formula does
not exceed 3% and 6% at hy,/H_=0.8 and 0.0 respectively.

0-¢

—x Oupuat n /R -
0.5 F a0
- 402
/M- 9.0 0 8.4
° 4 .
.4 E > az 2 e 0.6
4 g2
0.3 °
¢ 0 0.5
& SREaTE Y
0.2 f
'\'—r‘ .8
. LA . ) L g L4 L 4 A g e
1 1 1

VS POTE " .
2 1 . ’l'.c’ L]
8,/x,

Figure 7. Comparison between the FEM and the
Dupuit formula to determine well discharge.

It is worthwhile noting that knowledge of any two of the

variables Q/ng , R/r,, or h, /H, makes possible the
prediction of the other variable from Figure (7).

Vertical Velosity Distsibut:

Figure (8) shows the variation of the vertical hydraulic
gradient along the free surface 3®/dz, as obtained from
the LUSAS output, and the radial distance ratio r/H
from the well axis. The vertical velocity can also be
obtained from this figure by multiplying the values of
0®/0dz by the permeability coefficient k. It is clear that the
vertical hydraulic gradient increases in the radial direction
towards the well and reaches a maximum value of unity at
the well face. This means that the free surface must
approach the well tangentially with a vertical velocity of k
and a zero horizontal velocity. It can be concluded from
this figure that the vertical velocity starts to decrease
rapidly with increasing radial distance from the well axis
and nearly vanishes at a radial distance between 0.5-0.6
H,. Consequently, the Dupuit assumptions are not
accurate enough within 0.5 H, from the well axis, but can
be used with sufficient accuracy outside this range.
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Figure 8. Variation of the vertical component of the
hydraulic gradient near the well (h,,/H_=0.0).

CONCLUSION

1. The results of the free surface and the seepage face
height, using the finite element method, are well
supported with the results of the membrane analogy,
electrical analogy and relaxation approach.

2. The Dupuit equation cannot be used to define the free
surface of the water adjacent to the gravity well, where
the free surface is always situated at a lower level than
the real one at a distance from the well less than half
the saturated thickness of the aquifer.

3. In theory, it is impossible to lower the level in an
unconfined aquifer by more than half the saturated
thickness of the aquifer.

4. The vertical velocity components are of great
significance near the well and decrease as the radial
distance increases from the well, and nearly vanishes at
a radial distance between 0.5-0.6 of the saturated
thickness of the aquifer from the well axis. Thus, the
Dupuit assumptions can be used accurately outside this
range.

5. Although the finite element method is an approximate
method, it has showed the accuracy and the flexibility
to handle the free surface groundwater flow problem
to a gravity well in an undisturbed aquifer.
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