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Abstract

A finite element model for thermal stratification in stagnant lakes or
reservoirs 1is introduced. The time dependent vertical temperature
distribution in a deep lake during the yearly cycle of solar heating
and cooling is obtained. The numerical model 1s based on the combined
use of the Laplace transformation and the finite element method. In
this model the time terms are removed using the Laplace transformation
then the associated steady equation 1s solved by the finite element
method in conjunction with the classical Galerkin procedures. The
associated temperature 1s inverted by an accurate numerical method.
Two numerical examples are illustrated, the first corresponding to
actual lake data and the second corresponding to a laboratory
simulation case. In both cases results are in good agreement with

the solution obtained by other authors.
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1. Introduction

Large bodies of water such as lakes provide a convenient source of
cocling water supply to electrical generating power plamts. The cold
water available at depth in J.akes 1s used in the stream condensers and
then returned back to the lake. A knowledge of the temperature
gtructure within a large body of water amd the changes that take place
in it 1s essential before the perturbation effects of the added heat

load on the lake temperature can be assessed.

Lakes 1in temperature climates show a continuocusly varying thermal
structure throughout the year. Mamy lakes exhibit an i1sothermal state
in the spring in which a uniform temperature exists throughout the
depth. As the season progresses, a vertical temperature profile
develops as the water near the surface absorbs solar emergy. Later a
zone of uniform temperature begins to develop at the surface, falling
sharply and then asymptotically to an unchanged temperature deep down.
In the autunn the surface temperature begins to fall and thg lake
again reaches an isothermal conditiom at the begimning of the winter

Seasom ..

Theories for the time dependenmt vertical temperature distributiom im a
deep lake during the yearly cycle of solar heating and cooling were
developed by Dake and Harlemam [1]. They assumed that a portiom of the
incoming scolar radiation is to be absorbed at the water surface,
whereas the remainder is absorbed expomentially beneath the surface.
Heat 1is also conducted downmwards by molecular diffusion. The boundary
condition is formulated from a heat flux balamce at the water surface,
whicli accounts for back radiatiom and evaporative heat loss. The
solutiom of the second=order hest egquation was obtained by supere
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position of distinct solutions for the temperature distribution due to
effective radiation absorbed at the surface, and for the temperature
distribution due to virtually absorbed radiation. They considered some
special cases of simple time dependent functions for the incoming
radiation and the surface heat loss. Girgis and Smith [2], used the
method of variation of parameters for the solution of the heat
equation. They have taken into account general time dependent
functions for insolation and surface heat loss. As in Dake and
Harleman [1], they assumed ap exponentially decaying heat source
distribution caused by absorbed radiation. However, Snider and
Viskanta [4] have improved the understanding of internal energy
transfer processes in stagnant water. They considered g plane layer of
water of finite depth and analysis of radiative energy transfer within
the water was presented. The internal radiant energy absorption rate
was not a simple form and they applied an explicit finite difference
method for solution. The purpose of this paper is to present a general
finite element solution for the transient temperature distribution
through a body of stagnant water. The numerical model is based on a
hybrid Laplace transformation finite element method, Tamma and Railkar
[5]. The computational method can be summarized as follows: after
discretizing the spatial domain into finite elements, the Laplace
transform is applied to the partial differential equation and boundary
conditions. The elements stiffness equations are constructed using
Galerkin method and then embedded into the global stiffness matrix and
forcing vector. Solution is obtained for the algebric system of
equations in the transform domain. The time temperature distribution
is calculated wusing a numerical method for the inversion of Laplace

transformation.
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occuring in nature, consists of temég
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6. Conclusion

The combined use of Laplace tr

method is a powerful method of an

Alexandria Engineering Journal



A Finite Element Model Fo

Finite Element Sol

Figure (1):
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TIME 40

(day)
Z TEMP (°C)

(mt) FES GSS FES

0 10.233 10 027 23 921
5 9.189 9 211 21 561
10 8.316 8.209 18 106
20 6 901 7 033 id 238
30 5 863 6 101 9 782
40 5 210 5 391 ' 492
50 4.887 5 001 6 285
60 4.531 4 727 5 521
70 4.318 4 403 5 L07
80 4 120 4 237 4 190
90 4.086 4 128 4 163

TABLE(1) : RESULTS FOR LAKE PROB
SOLUTION) GSS(GIRGIE

TIME 0.5
(hr)
Z TEMBE = (28]
(cm)  FES GSS FES

0.00 28.925 29.100 34 461
1.25 25.396 25.501 30 721
2.50 23.418 23.381 27 892
5.00 21.511 21.408 24 21%
7.50 21.000 21.000 2z 396

10.00 21 540
12.50 21 467
15.00 21 311
17.50 21.199

20.00 21 108

e e e e
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the method is wuseful in solving
results for the temperaturerditii;
compare favourably with observa
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