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railroad cars, and the shock caused by handling (e.g. dropping). To
provide the necessary isolation and protection of packages, a
resilient means, known as package cushioning, is interposed between
the equipment and the container. Similar isolation is also needed to
mitigate the effects of vehicles striking a barrier or vehicle
collisions. The most important materials used as a cushion are

polymers, various plastic foams and latex hair [1].

The kinematic properties of systems possessing a nonlinear damping-
force function play an important role in the selection of shock-
absorbing materials. Lakin and Sachs [2] studied the energy
dissipation of nonlinear critically damped systems during the impact
assuming linear-spring behavior. They showed that the design of an
optimum energy-dissipation system depends on particular forms of the
damping force function and particular values of the system parameters.
Sachs [3] studied the characteristics of a nonlinear supercritical
damped mass elastic system with linear spring rate. Iwata and Kobori
[4] investigated the response of a single-degree-of freedom nonlinear
spring mass system with viscous damping when an impulsive force acts
on a vibrating system. Kulagin and Prourzin [5] formulated the optimal
control and spatial motion of a ‘shock absorbing rigid body. The
quality criteria were taken to be maximum absolute value of the
deflection of the cushion mass from the moving base and the maximum
absolute acceleration of the cushioned mass. Rice et al [6] pfoposed
design guidelines with a view to optimization of the system parameters

and the selection of spring type for linear damped absorber.
Although cushioning materials exhibit linear force-deflection

characteristics for small deflections, efficient package design

involves large deflections and consequent nonlinearity of cushioning
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Xstat ~ mg/R Vo T vo'{”xstat stat/k

and E: X, V_, G, k, , f(v) are time, displacement, initial velocity,

) &= B X

gravitational constant, linear spring rate, nonlinear spring rate and

dimensionless damping force ,respectively.

The general form of the velocity dependent resistance law can be

written as
f(v)i= Z 2 gn vn+1/ Iv lvz-1 (4)

Criteria for the selection of cushioning materials properties

An optimum energy absorption system is synthesized based on the

following criteria.

1. No Rebound of Impact Mass (critical damping)

Criteria of critical damping is introduced to describe the limit
of oscillatory and nonoscillatory motion. It can be deduced from a
qualitative study of the phase-plane trajectories in the
neighborhood of singular points (focus, node, or saddle point).
Lakin and Sachs [2] showed that if the phase-plane trajectories of
a nonlinear system have a singular point which has the same
geometrical properties as those of a critically damped linear
system, one may infer that the nonlinear system satisfies the
criteria of critical damping of a linear system. This means that
for critical damping, the trajectories are confined to the half
planes (+ v(t), x(t)) and at the limit, the singular point (v=x=0)

is approached from the direction.-x(t).
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2. Peak Deceleration, v'

The fragility index of equipment [1] a
dropping similar equipment applies only ti
general, the natural frequencies of

equipment are substantially greater

package cushioning. Under these co
directly proportional to the maximum
of the dissipation function and

determined to produce lower peak deceleratio

| l

3. Energy Dissipation Efficiency

The energy dissipation within the

kinetic energy is

E = ('ro - Tf)/'.ro
v
=1 SnEYR
v
(o]
where v

¢ 1s the rebound velocity,
final kinetic energy.

Defining the performance index FI»{

: Yive
g Y52 ‘ o
PI = [ 1 = (=== )"1/v' ]
. e Noax 14 4
the optimum energy absorbing system .



Synthesis 0f An Optimum Energy-A

performance index.
Results and Discussions

Equations (1) and (2) are solved numerical
order technique for dimensionless nonlinff‘
from 0 to 0.7, and for different qu«;‘“
(coulomb, viscous, quadratic, and mixed |

results are illustrated in Figures'ithrbuf
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Peak Deceleration

The absoclute values of the peak dec
damping parameter are shown in FigurQ‘¢;
values are reported in Table 1.

L

Table 1: System with minimum peak deqp

-

Damping v b
€ 0.0 0.1 ‘
-Form
'V'maxl 1.0
Coulomb
3 0
o
l"'max’ ~0.813
Viscous ,
l"'max |  0.707 o0.68
Quadratic
{2 0.354 0.32

viscous damping is considered, it
the damping parameters that prodt
tend to decrease with the inc e
damping, there exists a minimum
and . it is decreased from 0. J
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the same value of €, it can be observed that the quadratic dissipation

function produces the minimum peak deceleration.

Energy Dissipation Efficiency

Energy dissipation PI values are reported in Figure 4 for the case of
coulomb, viscous, and quadratic damping and in Figure 5 for the case

of mixed columb-viscous damping.

Comparing the maximum performance index values in Figure 4, it appears
that the coulomb damping results in the highest PI while the viscous
damping produces the lowest values. It can also be noticed that
PImax increases with the increase in the nonlinear spring rate. For
example, as € increases from 0 to 0.7,“PImax for coulomb damping
increases from 1.032 to 1.29 and it occurs at the critical damping
parameters. For the viscous damping, PImax occurs around 51 =4 0n5

and 1its value increases from 0.685 to 0.785. Meanwhile PImax
increases from 0.935 to 1.18 and occurs around 52 = 0.3 in the case

of the quadratic damping.

Considering the critical parameter combination of mixed
coulomb-viscous damping, one may notice from Figure 5 that it results
in the maximum PI . At & = 0.7 R0 is 1.1 and at €= 0.5,

max max
PI is equal to 1.195 as compared to 1.032 and 1.16 respectively

max
for coulomb damping.

Conclusions

An optimum energy absorbing system has been synthesized based on:
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1. No rebound of impacting mass
2. Lower peak deceleration

3. Maximum absorption efficiency

Four forms of damping force function, (coulomb, viscous, quadratic and
mixed coulomb and viscous damping), were investigated, when the

dimensionless nonlinear spring constant varies from 0 to 0.7.

It was found that there exists no finite critical quadratic damping
parameter. Therefore, the motion with quadratic damping is always
subcritical and renders a rebound velocity. The critical coulomb
damping results in higher absorption efficiency and lower peak
deceleration than the critical vicous damping. Meanwhile, the mixed
coulomb-viscous critically damped system produces the best efficiency

as compared to the coulomb critically damped one.

It 1is concluded .that the optimum energy dissipation system, that
satisfies all the design criteria, is the mixed coulomb and viscous
critically damped system and whose parameters are reported in Table
(2)

Table (2): Optimum energy dissipation system parameters

€ 0 0 0.3 OR'S 054
€, 0.085 0,09 0.095 0.105 0.15
E1

0.27 0.25 022 0.16 0
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Appendix: Closed-form expression for critic:

1. Coulomb damping

Considering only the dry friction, the norma
be "

(£(v) =2 € v v/ | v |

Substituting f(v) in equation (1) and divi

give »

dv a 3
-— = (+ 2 Eovo-x+ex)/v
Equation (A-2) has the solution in the

ek 45 x-_x2+ex4/2 +C
o o

where the upper sign holds for v > 0, ¢

For v > 0, and using the initial condi

integration constant C1 is
2
C1 = vo

At the end of the first quarter cycl;; l
equations (A-3) and (A-4) result in
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The begining of the second quarter v < 0, isl

which determins the integration constant <, QQH‘
|

c, = vi - 8 ;o LIg B y

The condition of the critical damping impliesy

second quarter, the displacement as well as t

Therefore:

8 X
max

o,critical

i.e. There exists a finite parameter &
- o,crit
depends on the dimensionless nonlinear gp@% C

2. Quadratic danping : ..F-

For the quadratic damping,
F(v) = = 2 v3/l viv
> 4 Y

the normalized equations of motion

dv2
——— + 4 52/va)v24s -2+ 2
dx '

For v > 0, and the initig;_ggi?¢ (




1 3 e
v o =v 1 - ---51- -----
8 Ez BRE
2 3
3 evo 5 3v°e
- 52 kT (=25 -
8 52 16552
For v < 0, the solution is
2
9 = 4 ( Ez/vo)x L3 3evo
v =¢ e = -é—g-—x -
2 8E§
3 gx?o

+ ;-—%- (1= -; -----

where

SACE X ey 4

C,=e ["'"""’ xm@x

3 ev Y
+ ( —————— - _-_—)X — ———— (1-
3 max
16 52 2 _€2 Bﬁg

and X ax Ca3B be determined from equ
end of the second quarter, X is nw{@& t

gives

2
’ v 3 e &t

Vf = +---§(1n-”—§-
€2 ¥ &



