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PROBLEM IN GENERALIZED THERMOELASTICITY FOR
A HALF SPACE SUBJECT TO SMOOTH HEATING OF ITS BOUNDARY
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Abstract

The distribution of temperature, stress and disp-acement in a
homogenecus isotropic solid occupying the half space and subjected to
a smooth time dependent heating effect,only at its bounding surface,
are 1investigated. The problem is formulated in the context of

generalized thermoelasticity with one relaxation time.

The Laplace transform with respect to time is used to obtain the
solution. Inversion of the resulting expressigns 1s carried out using
the small values of time approximation as well as numericzal inversion

formula. Numericzl results for a particular case are given.
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Nomenclature

T absolute temperature
o {5 ccmponents of stress tensor

p density

K thermal conductivity

t time

A .y  Lame's constants
i ccefficient of linear thermal exp
Ce specific heat for processes with i
Y (3x+ 2y Jay e
T reference temperature chosen
5] (1 S TO)/ rI‘0

2) [(11‘2“)/"]*'

o} YTO/N

g v/ ch

T, relaxation time

2
€ gh/B
Introduction

any thermal disturbances will prop
the conducting  medium, That i
instantanecusly at distances far

contradicts physical oks

The thecry of generalized th
based on a mocified Fourier's 1

Lord “and Shulman (1],
This theory allows for the so—
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which lead to propagation of thermal disturbanc <
speeds. This remedies the greviously
classical thermoelasticity theory.

The mathematical model of the generalized t e
of a complicated nature which rendérs the
soiution a difficult task. However, several p
investigated, among which;the case of a sphe
with a point source of heat by Sherief [2],
symmetric problem with a line source of hea
the case of an infinite medium with a "

either a wunit step i1n stress and zero temp
step in temperature and zero stress at th
Sharma [4]. The case of plane wave props
half-space under Smooth heating of its k
Gladysz (5] in the context of classical t
The present paper investigates the ,
thermoelasticity problem for a solid occup!
subjected to a smooth heating of its bounc
from any mechanical loads. r

Mathematical Formulation of the Pt&lig_fﬁ ,l
In the present paper, a homogeneous isotrog
space z > 0 is considered. The medium 1s L
plane z = 0,which bounds the half sps ‘
mechanical loads but subjected to a sm

1§

In the absence of body forces and h
equations of generalized thermcela: it
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as follows (3],

a) the egquations of motion

(A+‘5)uj +llui

& LA 8 A

b) the energy eguation
= . t . P 7 .
kT.ii pCE (T+ - T) + To (e
c) the constitutive equations

g = 2 D
ij’hekk bij"'z“eij (T ng.

(ui,j + uj,i’ .

N

eij=
The docts denote differentiation
denotes material derivative: the
6, denotes the Kronecker delta e?‘ﬁ'}’

; 1 |

g SRR '::-‘ e

Introducing the dimensionless. var

: 7 i1
X, =vnx , tl-vznt. Qu? L4
33 3 : A9
;:!? 1 W‘\
.._t!_ "']‘
u. = v nui‘t!g'";” 2 G S
where . -




v = ( ) ) N = __E_
e k

4

into equations (1-4), dropping the dashes ﬁaz-'"j
at the following dimensionless equations:

‘[‘:‘I ‘
The eguations of mction

82‘.;1=82u. .. -b®,

The equation of energy

e'.n =8+10 + g(ui,i +t° ui,i) ¢

The ccrnstitutive equations

' ibs B8
y o 2 ’ y i i 3
oij £ Ui,j + “j,i"" (s "z’“u,,u '.éiii""

We have made use cf 'tﬂ. -

equation (4).
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ulzuzao, u3-u(z,t).

Equations (5-6) reduce to

82u=52 ﬂzu-be

2 - g .o . .
De =e+1oe+ aD (u ""o_“) ;

2 ,
Oy = B -2) pu-be ,

g = s b2 L3 3
vy (82 J)Du e

¢,, =Du - be ,

X zz
of the stress, (the remaining

Furthermore , D = a/az.

where o (z,'c),o:tyy (z,t) and o

The Ccundary ccnditions ,_fég»,g;.‘

=
{

3 j[
taken as 1
(i)ozz (Ol 0 »
(ii) @(0,t) = £(t) a1 l ‘
b

where f(t) represents the
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conditions for the ccrresponding field variables must be imposed as

2= .,

Solution Of The Problem

The solution of the praoblem formulated in the previous section and
described by equations (8-14) 1is carried cut by introducing the
thermoelastic potential function ¢ defined as

!

u=D® . (15)

Using eguation (1 ), eguations (8)-(12) beccre,

2 2

e=g(D¢°;) (16)
plo =6+t 6+a D2lp+r 0 (17)
oxx= ( 82°2)D2°'be (18)
oy = (82 -2 D" 5-bo (19)
. ﬂ)zv-be (20)

Using equation (16) then, equation (17) becomes

-

D4¢_(l+c)D2¢5-[(l+e)to+l]D2;+;.+ r(;;=0. (21)

where ¢ = gb/8 2

The boundary ccnditions at z = 0 and as z— follow from equations
(13), (14) and (20); and from the regularity ccnditions respectively.
These will be discussed in mcre details in subsequent paragraph. The
imitial conditions for ¢ and its ccrresponding time derivatives are
all homogeneous at t = 0 , this follows from the assumption that the
medium is initially quiescent.

Taking the Laplace transform, defined by,
Wip =t wie) ePtar
c
of bcth sides of equation (21) and ccnsidering the homogerecus initial
ccnditions for ¢ and its time derivatives we get,

2 2

. 2 2 -
(D™ - k) (D - kK;)elz, p) =0 (22)

’
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where <y and k2 are the rositive roots of the characteristic
equations of (21) namely

kI - (p(1+ e)(l+top) - p2]k2 + (p3+ fop4) = 0, (23)

The solution of equation (22) that satisfies the regularity ccndition
as z tends to infinity is given by,

; -klz B -kzz
(z,p)= Ae + ———= .e (24)
kz -k 1

where A and B are parameters to be determined.

Taking the Laplace transform of both sides of equation (16); assuming
the homogeneous initial conditions for ¢ and substituting for ¢ given
by equation (24), we get

— 82 5 5> K2 B(kg-pz) —kzz
8 (z,p) = ---[A (k] - ple + -

e
b kz-kl

] (25)

Similarly, taking the Laplace transform of both sides of eguation (20)
and using equations (24) and (25), we abtain

_ 2 2 22 -kz B 2 2 .2 2 =K,z
o (z,p) =A[k -8 (k=p )le +Tz[k-e(k-p)e ] (26)
2z 1 1 kz-k1 2 2

To determine the twc parametersA and B, we take the Laplace transform
of the boundary conditions at z = 0 given by equations (13) and (14).
Thus using the expresions 6 (0,p) and ‘gzz (0,p) octained from
equations (25) and (26) above we arrive at
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b td - o (k2 bptn)
= =g Flpitesgpomny
B pU(k] - kz)
- and
b (K2 (k¥ - p%)]
B = -5 (p) 3
F—

wnere F(p) denotes the Laplace transfor
equation (13.b) .

Hence the corresponding expressions for (2 [

o__(z, p) are given by

A L
- - F(P) N
U] (Z,p) = ——.. . e k - :
B° pg():?-ls2 2 5

s
;;(Z‘p) =

" k - pama

1
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= b F(p)

2.2 8
o (z,p) = vy o Lk - B i-p )J.@
2z 2 p (k

8 %’ u} |

,J

K.
The Laplace transform of the displac ‘
equations (15) and (27) as

= b F(p) {
ulz,p) = -~ 2 3
8 p (k1 2)
-k,2Z
2 20042 2 2
+ K, ( k] -8° (k] -p )] e

Similar expressions can be cttained
usmg _equations (18) and (19) and th 1
9 and © .

ccnponent"zz(z,t) and the displac
dcrain, we need to invert the L
(28), (29) and (30) remactivoly. g

B, |
In the present paper two apgrc
Because of the well known short
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in generalized thermcelasticity with one relaxation time, the first
approach 1s based on the small time approximations proposed by Paria
(6] and Hetr:iarski [7], which ccrresponds to large values of p.

The second approech 1s based cn the numerical inversion technigue

develored Lty Hcnig and Hirdes [8], which is suitable for subsequent
values of time.

Inversion Of The Laplace Transforms For Small Values Of Time

The methed is based on expressing the various terms in eguations
(28), (29) and (30) as truncated series of powers of p 1n a consistent

manner depending on the desired cdegree of accuracy as will be noted 1in
the following analysis.

The expressions of kl and k2 ottained from the characteristic

equation (23) are given by

g, it S
k, =p hi (1/p) : I T (31)

where

1
h (1/p)= 5 {1+ (1+ €)(1/p +7 )+ [142(e = 1)( 1/p + 1)
2

+ (e+ l)2 ( 1/p + To )2]%}

Writing the Maclaurin series for hi' 1 = 1,2 and retaining terms up
to crder l/p‘, we get
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where

and
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k: = p e.. ==, 1=1,2
Yog=0 PP
where
4
Pio = 3o
b o il
i1= 73
233,
i
— 48,58 0 % fiq
127 TG
i0 _
8a a2 -4a., . a.,a., + '3 ‘
d 1310 T 840 #4182 +iA N
i3 © R | 1

572
16 alo

AndLmim;tim'MaﬂaunUxexﬁnmiqnfb?

1 1 4
2 o8 3 --2- z bj 3 !1
kS K3 o 0 T
where
l .

bo = —

a
l ) ) "'; I.

LA ..
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1 2 |
y = =l dee e 2c-lerD?c v (e

-

a

o2
[}

-1 |
——7[(8-1)( 52 - 8e +1) + 3(e +1);
a

w
[}

+3 et o2y (es 1)

1
, ‘.;9[:4 16 P 3 8

o
*
1

- l6¢

+ 1+ 4leell Gaatitt i

2
0

3 VI [ a
+ (e + 1) ¢
To e | ..

+6(e+l)4( ez-4e+l)t

+ 4 lee piti et

Using tne expansions given 1in eg
e,

reference to the expresions for 9,

2 2 2 < 2 2
k™ - 1 [kE = BE N GeENe
(1 p 3 3 p),] 4

= . g
g) n=0 "7

pz(kf -k

- where i,j=1,2 andi # j

n
Bimn = mzo P ALin-m)

Aijk

-j-go %i2%(kegte 01




-
o =a. =1 A
alo_ 10

g F S0y (

o~ B
3030 " 8 (ai,_o mdl &)

-ai£=au<1-52) . Bl .2.3.4
and : (
2 2 .2 SR 2 o
) - 8% G- pOIIKS - 87 (k] - pD] 4 |
P (k® = ko) '

1 2

where 1 # j, 1,j =1,2

0 e } i
C = Z b- a. ’ n ‘O,‘,l'l 4 L
Lo im j(n-m) ¢
Y ‘f - it
0., = L by a . k=0,1,....4 [
K 2 -£) EAE
Yoy | =0 l(k' ) : »

It snould be mentaoned that the above cce
and 3, (1 # 3). | :
Si;m’.larly, we have

’ 2 2 2 2
T L
p 1 T %8s _ n=0

where 1 # J, 1,) = 1_,2

Ead

n X 1.
“1in mEQ Pim ®3(n-m)’ “;'gf:
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Substituting from eguations (38), (39) and (40) i1nto eguations (28),

(29) and (30) respectively, we obtain

- 4 1 -k, 2 4 1 K52
® (z,p)=F(PI[( LB, == ) e - (1 B =i (41)
n=0 pi n=0 2lnp
B b 4 1 -k, 2 -k,2
c (z,p) = == F(p) ( ) Cr' o ). [ e - e ] (42)
2z 82 nsQ " P
and
i b 3 1 -k, 2
u(z,p) = =—— F(p)[- ( LoD -—B¢])e
32 n=0 12n P
% 1 -kzz
+ ( DZln —=ap Je 7] . (43)
n=0 P
In oraer to invert the Laplace transforms in equéetions (41) - (43) for

small values of time we have to know the expression of the heating
effect f(t) at the boundary z = 0 in equation (14).
Thus we ccnsider the case

f(t):tze"’t for t >0 ,a >0 (44)

’

the parameter o« i1s responsible for the velocity of changes in the
temperature on the boundary.

Taking the Laplace transform of equation (44) we get

2
F(p) = -—=
(p+9)

3 (45)

Substituting from equation (45) into eguations (41) - (43), and since
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A

only small values of time are ccnsiderea, which cc
values of p, 1t follows from equation (34) th

take k , 1=1,2 appearing in the exponential fur

u

. ;o =b. pz
1 e}
e Tze .8 *

bl
Having dcne such substitutions, the convol%gvﬁy
transform 1s then repeatedly used to invqﬁ¥ﬂif
After some lengthy algebraic manipulationaﬂ‘=

ki

$ b2

8(z,t) =[) B ¢ (z,t)le = Hlt=b,
n=0 1l2n 1n } ‘

|

4 .z i
-[ 1 B ¢ iz, tlle 2; HKJV

n=0 2ln 2n
b, g Dl
o (z,t) = -——[) C4¢ (z,t)])e
2z 32 n=0 ® 1N ; |
4 ﬂﬁﬁ;
- [ l c " ( Z F) t) J ‘ 8|
n=0 n 2n
b 3 Bl
ulz,t) = —==f=L ) p ¢ (z,"»’
a n=0 12n 1(m+l)
B i
3 i
+ [o] o (z,£)) e
n=0 2ln 2(n+l) Hr g
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v ‘zvt’='2—' € <" [1 -e
10 2

2 2

iéz,t):e [-b.mzt Ii°+(t +Zbi°zt)Iil {‘2 h

-at 2 22
¢ (zt)=3e (b zt1 -2 2tH
i3 10 ie "io
2 ' 2 2 A i
+(t+4b 2zt+b z )I -2 (t +b 2z2)
io io il 10
-a t 2
¢ (z,t) =z e (- b;o th21' +b
14 : 1c
2 58 3 ;
- z (3t +b 2zt +b 2z )I_ +
1e 10 10 13 2

wr.ere
t «a x- i &f
b.oz o |
5 _J.
1
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n at n n abloz
t n ax (t e - b, . EHS ) n
Iln = f e dxm 4 all THO-1)
b. a

3

[}
-
~
~w
‘-l:-
~U‘l

and H (t—bioz) is the Umt step function defined bty

0 t < BN
10
H(t-b. 2z) =
10

1 t > bams
io

It 1s apparent that the solutions of the present generalized thermo-
elasticity oproclem with one relaxation time, for small value of time
ccnsist of two waves like expresions; this 1s due to the presence cf
the unit ster functions. The above functions vanish identically for
z> t/bzo. Hence the effect of heating source is ccnfined to a
bcunded Fut time dependent region of space. This means that we have a
signal propagating with a finite speec.

Numerical Inversion Of Laplace Transform

In order to extend the range of application of the expressions

for o ';zz and u given by equations (28), (29) and (30) .
respectively, for subsequent values of time, a numerical methcd for
the 1nversion of Laplace transforms 1s adopted.

It 1s well known that there exists a numcer of numerical inversion
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methods, among these are the methods based or. Fourier series
aprroximations. Durbin (9] derived the arproximation formula
th 1 . ® kX kK tr=
f(t) = === [ = = Re{ F(v)} + L Re{F(v+i — )}ccs —
T 2 ' k=0 by T
e 1kx kxt 1
- I 1im {E‘(v PRge— }sm -~ ] = F (v,t,T) (49)
k=0 m J5

for 0<t <2 T , where F(v,t,T) is the discretization error given

oY,

~

- -]
Fv,t,T) = L %% £ (2er+ t),
k=1
and v is a free positive parameter. Durbin [9] showed that the
discretization error can be made arbitrarily small by choosing v
sufficiently large. As the infinite series in eguation (49) can only

pe sumred up to a finite number N of terms, hence the approximate
inversion formula for f(t) 1is,

g 1 N kx kxt
£(t) === --RelF(v)} + T RelF(v#r === )lcocs -——
N 1y 2 =0 T T
N ik x kgt
-1 I {F(v+-—)}sin -—— ] (50)
=0 o T
Thus a - .truncatlon." error 1s introduced. A disadvantage of

such 1inversion methcd 1s the dependence cf discretization and turn-
cation errors on the choice of the free parameter. Homig and Hirdes

(8] were akle to remove such disadvantage by the simultaneous
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application or a procedure for the reduction of the discretization
errcor, a method for accelerating the convergene of the Fourier series
alld  a procedure that ccmputes approximately the "best' choice of the
Iree parameter. For details of thelr work the reader 1s referred to
the aoove reference. For the sake of illustration, the special case of
cceper material (e = 00,0168, 82 = 3,940and e 0.1} Sas
considered. The procedure outlined in (8] is adopted for the numerical
1nversion of the Laplace transforms given by (28), (29) and (30) to
ottain the temperature distribution 6, stress distribution 1 and
displacement u, respectively, Figures (1), (2) and (3) represent their
profiles at various polnts away from the boundary; these profiles are
produced for different values of time and choice of the

parameter o 1n the heating effect.

o
~
g

0.08
0.05

0.02 t= 2,“:_4

et tae ve st e ———— .,

=] ) I I " "

S emss geesmog oo

Wiy

4

.0.00 0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 Z

Fig. 1-Temprature distribution
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