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Abstract

The turning and change of directiag ;(f?"
linearized mathematical model for «
ship. Alternative time conatenqﬁ'é
effect of changing ship's and ruc
rise times, maximum drift angle
duration, turhing radius and
investigated. It was foﬁnd that, a
the rudder area, the length-draft :
effect on the response of the ‘

effect of length-beam ratio.
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1. Introduction n
t
The turning and change of direct
using a linearized mathematical
motions of the ship
represents the transfer :"
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drift angles with respect to rudder deflection. Analytical solution
for step and pulse rudder inputs were derived. A set of time
constants, alternative to those suggested by Nomoto, were given, and
the correlation to Nomoto's constants is given. The effect of the
nature of the poles and zeros and their relative locations, in the

s-plane, on the ship's response is discussed.

Variation of both ship's and rudder's parameters, namely
length-breadth ratio, length-draft ratio, location of the center of
gravity, location of the center of pressure and the rudder area are

taken into account.

The effects of these parameters on the ship's response were evaluted
on the computer. Evaluation is based on the time domain response
characteristics. For the turning manoceuvre these are: rise and delay
times, steady turning radius and time required to complete one turn.
For the change of direction mancesuvre the rise and delay times, rudder
deflection duration and the maximum drift angle together with its peak

time were investigated.

Further analytical investigation for the different relative locations

of poles and zeros of the transfer functions was performed.

2. Mathematical Treatment

In [1] the transfer functions for the yaw rate ém’ yaw angle(am,
course angle ep and drift angle a with respect to rudder deflection

input were derived, namely:
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-a, determine the stability of
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may be seen from Fig. (1).

Considering the two poles to be taal

the (relative position of the zero
governs the shape of the response
both poles, Fig. (1a), or betw

peak 1in the response, whereas for
the response is slower than in tha.l
the right of both poles, Fig.
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the presence of a peak [3].
Second order systems may be approximatauf

damping is considerably large [4]. Consic

both numerator and denominator by Tg;
larger than Ty» T, and Ta’ the equation

represent a first order system for which 1
illustrated in Fig. (1d). Such an approxim
in [5].

Fig. (le) illustrates the pole-zero mapp
transient response of P2 and (PD)2 - F

poles are conjugate complex.

Eqn. (1), with its second order chz:
represented in a decomposed block diagram f;

nature, as shown in Fig. (2) in which

. /[Kf(KL + F)-mvfﬁ + KD)d;
n JmV

and

J(KL + F) + mVKf

Y omiK (k + PV + K)dT

3

2.1 Steady turn response

Considering the transfer function
(5), and for a step input e Y
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To find the radius of steady turn, we

state yaw rate as follows

lim © (t)= lim s € (s) = -
m S0 W 3 |
e T, ¢ (6

3
. 3 % % 180
= o n

where gr is 'in degrees.

It is worth mentioning that for a sy
constants appreciably larger than the OQ‘I
approximated by the sum of all the small

rise time corresponds approximately to t

2.2 Change of direction manoeuvre

To change the course of a ship, the
certain period of time. This may be mat
pulse function of height Er and dur;ltiﬂm
however, is an approximation of the re
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the drift angle is
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The steady state value of the drift angle, a ( ® ), vanishes since

once on the new course, the ship will have no drift angle.

3. Oscillation of ship during Manoeuvring

In the previous analysis the poles of the transfer functions of
the ship were assumed to be real and distinct. The existence of
complex conjugate poles of the transfer function will cause damped
oscillations in the response of the ship, which are not preferable,

especially from course keeping point of view, and should be avoided.

The conditions that lead to oscillating response depend on the ship's
parameters, which 1in some extreme cases, e.g. excessive transfer of
L.C.G. forward of the center of pressure due to improper loading, may

render the poles of the transfer functions complex.

Considering Egn. (8) relating® (s) to 5r(s) with pulse input
representing change of direction manoceuvre and assuming complex poles,

the drift angle « (t) is then given by

- -C_.t ;
& (t) & E§r & 2 (C1 cos C3t + C4 sin C3t),

where
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Fig. (3) illustrates the response corresponding to different locations
of the complex poles (different wn and € ) of the transfer function

in the s-plane [3].

4. Results and Discussion

The methods and equations for computing the ship parameters and
hydrodynamic forces and torques were given in [1]. The ship parameters
were chosen guided by data presented in [8,9]. A reference ship with
the following particulars, including variations in L/B, L/D, R.A.R.

and d, was considered in the computations:

L =200 m

L/B =6,0, 6.5 , 7.0
L/D = 16, 19 522

\Y = 16 knots

R.A.R.= 1.5 % , 2.5 %
d = 0.033L, 0.026 L

The time domain behavior during both turning and the change of
direction manoeuvres was calculated. The numerical calculations were
carried out wusing the PDP-11 computer of the Faculty of Engineering,

Alexandria University.
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4.1 The turning manoeuvre

For this manoauvre the rudder input is assll
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figures it can be seen
turning radius.

In what concerns the effect of R.A[
the R.A.R. considerably decreases the
of the center of pressure forwar'wilL
radius. E
i
|

Figs. (9) and (10) represent the eff.

the R.A.R. and location of the cent
ém(t) and drift angle a(t), respect
appreciably the yaw rate and drift angl

L/D has a more significant role
Despite that both L/D and L/B have
virtual mass and virtual mass

incorporated (in the form of smipn~g'
damping torque coefficient to éq
moreover 1is present in two terms
function. Further, the effect of
on the yaw rate and drift ang}
pressure further forward of ﬁﬁf;“f
drift angle. 1

Fig. (11) idicates that the Qﬁfegf of
the rise and delay times of the dr
steering dynamics, it is hence
L/D.

Fig. (12) and (13) illustrate @t
effects of R.A.R. and location
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'
turning radius. Increasing L/D, o
i)
turning radius, while the effects of

of pressure are similar to those dedt

the steady turning radius is

in order to reduce it.

The time required to complete one
Figs. (14) and (15) for different
Results deduced from these f*yﬁ .
Figs. (7), (8), (12) and (13), where &

to shorter turning times.

4.2 Change of direction ~-w:"‘i e

Fig. (16) illustrates a typic
10 degrees on Bm, em, ep and a
to change the course of the ship

Figs. (17) and (18) show the
angles, respectively. It is
and a tends to zero in steac
the center of pressure on tt
(19).

To Jjudge the time domain
times for the yaw angle were cal
was discussed before, incre
times, whereas increasing L/B h
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The maximum drift angle and its corresponding time are shown in Fig.
(21) for different values of L/B and L/D. Increasing L/D reduces the
maximum drift angle, while increasing the time necessary to reach it.

The opposite effect is observea for L/B.

Fig. (22) shows the required duration € of the rudder pulse input
( 5; = 10°) for a change of 10° in ship's course, for all the
considered parameters' variations. Increasing L/D reduces € while
increasing L/B increases € appreciably. Increasing the R.A.R. from 1.5%
of 2.5 % reduces € by about 60 %. Movement of the center of pressure

forward of the L.C.G. decreases € .
5. Conclusion

Extensive computations were carried out for the turning and change of
direction manoeurves . A linearized mathematical model for the coupled
yaw and sway motions was adopted for determining yaw rate, yaw, course
and drift angles. The time domain response characteristics were
calculated. It was concluded that the major factors affecting the
manoeuvrability were R.A.R. and L/D. The effect of increasing any of
them 1is expressed in reducing the turning radius and the required
rudder time duration, for course change. It was shown that increasing
L/D causes the response of the system to be slower. On the contrary,
increasing L/B causes the system to have faster response in both

turning and change of direction manoeuvres.

Generally, the time domain response was found to be more influenced by
L/D rather than L/B, since L/D alone is incorporated in the damping
torque coefficient, and to a higher power. The effects of changing L/D

and L/B on the system response are always opposite in both manoeuvres.
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