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Abstract

A mathematical model 1is presented to simulate the response of the
coupled yaw and sway motions of a ship to sinusoidal rudder
deflection. The sinusoidal deflection 1is considered as an
approximation of the trapezoidal wave used for the standard
Z-manoeuvre. The justification of this approximation is shown to be
based on the fact that the ship, as a dynamic system, acts as a
low-pass frequency filter, which responds principally to the
fundamental component of the Fourier expansion of the trapezoidal
wave, while filtering out the higher frequency components. The effect
of variations 1in the principal dimensions' ratios of the ship, the
longitudinal position of the center of gravity (L.C.G.), the location
of the center of pressure (C.P.) and the rudder area on the
directional stability indices and on the response of the ship is
studied. The most significantly influencing factor, not only gn the
stability but also on a step response, was found to be the reiative
locations of the L.C.G. and the C.P. A slight shift of L.C.G. forward
of C.P. causes a yaw rate overshoot, whereas excessive further shift
of L.C.G. results in oscillating yaw rate. On the contrary, excessive

shifting of L.C.G. aft of C.P. renders the ship directionaly unstable.
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Nomenclature
a translational acceleration of C.G. of ship perpendicular to
velocity vector
Ar rudder area
A.C. Admirality Coefficient
ship's breadth
p ship's block coefficient
ship's draft
longitudinal distance between C.G. of ship and the center of
pressure; positive if forward of C.G.
F propeller thrust
frictional resistance coefficient in Froude's formula
J polar mass moment of inertia of ship about a vertical axis
through C.G. including added moment of inertia due to yaw
] y-1
k 2D/L
oL, hydrodynamic lateral force on rudder per unit
radian of rudder deflection
KD total drag force on ship acting in the center of pressure
Kf hydrodynamic damping torque coefficient on ship for yawing

A

N =

hydrodynamic lateral force on ship per unit radian of drift
angle; acting in the center of pressure

ship's length

longitudinal distance between C.G. of ship and point of action

of hydrodynamic force on rudder

longitudinal position of center of gravity of ship; positive
if aft of midship

mass of ship including added mass in sway

Quasi propulsive coefficient
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r radius of gyration for the polar moment of insrtia of ship
Rf frictional resistance of ship

R.A.R. rudder area ratio = Ar/LD

S wetted surface area of ship at draft D

s laplacian operator

SHP shaft horsepower

t time

s ships speed

e drift angle

o, ,a2 poles of the ship's transfer functions

A displacement of ship (in tons)

%_ rudder angle

nh hull efficiency
8 yaw (heading) angle
8 p course angle

p density of water

w frequency of sinusoidal rudder deflection and ship's response
v displacement volume (in ft3)

« ) differentiation with respect to t

1. Introduction

The treatment of the directional stability of ships was dealt with in
a simple preliminary manner as early as 1922 [1], where only the
conditions for stability were discussed. Since then the problem of
directional stability was further developed by many authors. This has
lead to both studying the hydrodynamic behavior of the ship as well as

defining standard tests for manoeuvrability.

The Z-manoeuvre 1is one of these standard tests. Basically, the
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manoeuvre 1is executed through deflecting the rudder in a trapezoidal
wave. This trapezoidal periodic function can be expanded by Fourier
theorem in a series of sine waves. The first term in the summation is
the fundamental component of the expansion. Higher components will be
filtered out as will be shown. Therefore, an analytic study is carried
out for investigating the response of the ship to a sinusoidal rudder
deflection at different frequencies covering all possible rudder

deflection rates.

Sinusoidal tests, moreover, are normally performed to experimentally
identify the transfer function and time constants of ships or models

[2,3] in the frequency domain.

In this work an analytic solution for the frequency response of a ship
to sinusoidal rudder deflection is given. Absolute stability of the
problem of ship steering is discussed. The coupled sinusoidal sway and
yaw responses to a sinusoidal rudder deflection input at different
frequencies are derived and displayed to examine the response
characteristics for different ship parameters. Variations 1in
length-draft ratio, iength-breadth ratio, rudder area ratio and
position of the center of pressure were considered. Moreover, the
effect of the added mass in sway on shifting the center of gravity of

ship is also discussed.

The results are displayed graphically in polar, log-magnitude versus
log w , Bode, db-magnitude versus phase angle plots and on Nichol's

chart.

2. Mathematical Model
Considering a ship travelling at a constant speed V with the rudder
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set to an angle 6r' the forces and moments acting on the ship,

together with the angles describing its orientation in an inertial
coordinate system is shown in Fig. (1). The ship executes in this case
both translational and rotational motion. The velocity and
accelerations of the C.G. of the ship with respect to the inertial
coordinate system are shown in Fig. (2a) and (2b) respectively.
Combined sway and yaw motions will be considered, since for linearized
models the remaining motions, namely surge, pitch, heave and roll are
uncoupled from yaw and sway motions [3]. In [4] this problem was dealt

with, however no results were given.

Applying d'Alembert's principle in the direction perpendicular to the

velocity vector, the differential equation for sway is obtained as

ma - K & - F cos (90 -a ) + K 5 =0 (1)
L el "\r

From Fig. (2a) the velocity vector of the ship is expressed as
.
]('2— -ep)

= V. e

and from Fig. (2b) the total acceleration of the C.G. is

n
LT jls -©6) ae .. x
(= - 8 ) dav 2 p : p j(= - 6)
[ vel '2 p ] = 3t © - V[-] Frl 2 D },

from which the acceleration "a" perpendicular to the direction of V is

a0 j(%-ep)
a=V[-jaT ’ € ]
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Fig. (1) Coordinates, hydrodynamic forces and torques
acting on the ship
o
= el T8 & :
VeYe Alﬂ &e"of
8 i
T8
a) Velocity vector b) Acceleration vectors

Fig. (2) Velocity and acceleration diagrams
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Substituting this expression for "a" Egn. (1), noting that
3[

. i 2

-5 = o

and after linearization on the assumbtion that & and %r are

considered to be small angles, we obktain

a6

—tE _ 6
mv - = (K +F)a- K O (2)

Similarly the vyaw equation of motion 1is obtained by applying

d'Alembert's principle for equilibrium of moments about C.G. as

2
d em aem
———— - a o - i - in® - 6 ¢ a =K, =
J 5 KL d cos KD d sina KD d sin KcL r Lcos f at
dt

or after linearization for small 6r and a angles

d28 46

m m
=(K 4K Ad o #:Ksr 436 pitig S0 _CC (3)
dt2 L D ClL, i at

J

Solving the sway and yaw equations, Egs. (2) and (3), taking into

-account that the drift angle

and after taking Laplace transform, with zero initial conditions, the

following two transfer functions are obtained

*) 2
em(s) KcL[m 2Vs +(KL+KD)d + (KL+E) ] o
6r s) s {JmVsz+{J(KL+F)+Kme]s+Kf(KL+F)—mV(KL+KD)d }
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and 2
op(s) ~Js - K_8 + [(KL+KD)d + (KL+F)2 ]

£
On(s)  mavs + [(K + K)d + (K +F)2 )
L D L

(5)

The transfer function between the yaw rate em and 6r can be
obtained from Egn. (4) as
o _(s)
my £ £
m KCL[ vV Ls +(KL+KD)d + (K +F) ] i

6 (s) 2 : K
r { amvs “+ [J(KL+F)+K mV]s+Kf(hL+F) mV(KL+KD)d}

f

Multiplying Egns. (4) and (5) yields the transfer function relating
® (s) and % (s)
p r

T T 2 )
%(s) Kep { 38 Kes + [(KL+KD)d+(KL+F) ]

= (7)
6 (s) -
r s {Jmvs +[J(KL+F)+Kme]s+Kf(KL+F)-mV(KL+KD)d }

An obligatory condition for the directional stability of the ship is

that all the roots of the characteristic equation, i.e. the
denominator of Eqn. (4) or (6) set equal to zero, must have negative

real parts, which necessiates that

Kf (KL + F) > mv (KL + KD)

Egn. (4) represents a (PI)Z-control property, Egn. (6) a
(PD)Z-Control property and Egn. (7) a (PI(-D))Z-control property.

The rudder input for a Z-manoeuvre has the form of a trapezoidal wave.

Approximation of the trapezoidal wave was considered in [5] where an
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idealization into pulses was treated. Another approach will be adopted

here.

In order to approximate the Z-manoeuvre, the trapzoidal wave is

expanded by Fourier series in the form

4 6r @ sin nwtr
6 (t) = Z o vy sin nw t
Itrw n=1533;5; 555 n

where tr is the time required to deflect the rudder an angle equal
to gr and wis the frequency of the trapezoidal wave. The predominant
harmonic in this expansion 1is the fundamental component with the

lowest frequency , which possesses the largest amplitude.

The transfer function G(s) of a real controlled plant can be expressed
as a fractional rational function in which the degree of the
denominator is higher than the degree of the num€rator, i.e the number
of poles 1is greater than the number of zeros. This is attributed to
the fact that the requirement of physical realizability imposes the

limitation that

lim G(s) =0

s —®
because a real plant can not follow extremely high frequencies.
The terms containing the laplacian operator s in the denominator of
the transfer function of a real system cause the phase shift in a

harmonic signal. The influence of such terms is more propounced, the

higher its order and the larger its coefficients. The numerator of the
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transfer function of a real controlled plant may have derivative
elements, namely the terms containing the operator s. These elements

produce a negative phase shift.

In contrast to physical systems, ideal controllers (without lags)
contain derivative elements which would behave as a high-pass
frequency filter and would amplify primarily the high frequency
components of the input harmonic signal [6]. Besides, systems having
either Do or D, property behave as high-pass frequency filters as

1
may be deduced from corresponding frequency response plots [7].

Since the transfer functions of the plane motions of the ship
simulated in Egns. (4), (6) and (7) represent (PI)2, (PD)2 and
(PI(—D))2 properties, respectively, the low-pass frequency behavior
is insured. This means that the modulus of the frequency function

considerably decreases with increasing frequency.

Therefore, the rudder deflection 6r(t) is considered to be a
sinusoidal function and the problem of steering is investigated by

frequency response methods.

Converting the transfer functions represented by Egqns. (4), (6) and
(7) to frequency functions through replacing the laplacian operator s
by jw, and introducing the following frequencies related to the system

time constants, in order to simplify the mathematical model [8],

(rad/sec) (8)
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KL+F
“’L . (rad/sec)
mV
K
L
wCL = s (rad/sec)
mV
!
(KL + K) d i |
D
w =7/ (rad/sec)
J i
f
oK i
= (rad/sec)
J

) _/ Kg (K +F)-mVd (K +K) =

= o )
JmV 4 H

we obtain

0 (39) wz[jw’+(w+(ws>2w>]
m B c Lt e feling= )} |
g (3% . Lo |
r je [(jw) +3w(wd+ “’L“(mﬁ.
: : w [T
. PBonwt g .2 S
em(]w) g w_ [jo+ (w . * (-m-c) ﬂ‘)j
ﬁr(jw) E 1

(Gu)? + 5w (ugsw) + (0 ¥

2 )

0 (4 o - - (3 w) +
p(] w) i wCL(J w) wd‘- Cé

6. (3w - o)

and

«(Gw) 8w o (Gu)
6,Gu) "8G W~ 6,03 k|

(jw‘)chL + | %i + W
[(jw)2+(jw)(wd+ut) + (ay
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Finally the inverse frequency function of @ is

1

a (je)/ 5r(jm)

3. Computational Treatment

In Egns. (2) and (3) the coefficients depend on the hydrodynamic

characteristics of the ship and the rudder.

The mass to be considered is the virtual mass of the ship including
the added mass. Also the polar mass moment of inertia includes the
added moment of inertia. The added mass in sway and the added mass
polar moment of inertia are both approximately equal to the actual

ship's mass and polar moment of inertia respectively [9].
Hence,
m=2P LBDo

b

where y is calculated from Alexandar formula, namely

(V in knots) S REE )

where r, the radius of gyration, is given by [10]

r = L/4
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The drag force Ky on the ship is

frictional resistance [9], and is inde

The frictional resistance can be ca.

Rf = fs V1.825

v 1 2
S = (1.7 LD +—) 2 (m™)
D {BL28)

where L and D in ft, Vin £t

The thrust is calculated using the Admir

namely
150 |
A.C. =10 (YL 4 — ) (L
v !
e 2030 i
ol it
SHP = Steee- (V in knots)

A.C, i'>

|
Hence the thrust F is given by il

SHP x Q.P.C. x 75 x 9,81

n
h - v

The hydrodynamic damping torque c
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0 k) k = Lbv
Kf=(o54- 'E’LD)
where
2D
il
The hydrodynamic lateral force pe: = angle

acting in the ship's center of pre

a
p
K. .= LD KL,
2 4 a
3 &
where e is given by Jones' formu.
GKL &
b bl
;-

1
L
!

The hydrodynamic rudder force P’T
|

l

given
similarly by

3] 8K
K, =—A v otk i
2 a6

For the numerical computati
considered:

L =200 m ( = 656

L/B =16,0", BB

L/D =16, 19 , 22

Rudder area = 0.015 LD , .0~ '
v = 16 knots !pﬂ g

Alezandria Engineering Journal




Directional Control Of Ships-Sinusoidal Response Of Plane 381

d = 0.026 L, 0.033 L forward: offiscie. [10]
f = 0.008703 (Corresponding to ship's length, salt water)
Q.P.C. = 0.6
nn = 1.03 (single screw)
9K g
66? = 0.022 (for rudder aspect ratio = 5)
r

The longitudinal distance from L.C.G. of ship to the C.G. of added
lateral mass in sway varies from 0.039 L to 0.049 L [10], here an
average value of 0.044 L was considered. On such basis the position of
the resultant center of gravity of the ship and added mass together is

located at 0.007 L forward of midship.

4. Results and Discussion

The numerical computation were carried put using a FORTRAN IV program

run on the PDP-11 of the Faculty of Engineering,Alexandria University.

Figures (3) and (4) illustrate the effect of variations in L/B, L/D,
location of L.C.G. and the center of pressure on the course stability
of the ship expressed in terms of the poles o and az of the

transfer function. It is evident that one of the roots is relatively
small with respect to the other one. Absolute stability is ensured
since the poles are all negative. This is to be expected for a ship
whose parameters lie 1in the normal ranges. The predominant pole
is a, since it 1is nearer to the 1instability region, thus
considerably affecting the magnitude ratio and phase shift. From these
figures it can be seen that increasing L/B improves the course
stability, while on the other hand, increasing L/D has an opposite

effect. The effect of the location of the center of pressure relative
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to the L.C.G. was relatively slight in the considered range. However,
decreasing the distance between the center of pressure and the L.C.G
improves the course stability. Moreover, it is deduced from the
results that excessive movement of the center of pressure forward of
the center of pressure would render the system unstable, while moving
it aft of the C.G. starts with producing some overshoot, and with
further transfer aft resulting in complex roots and consequently
oscillations. When the L.C.G. is located forward of midship due to
added mass effect or cargo shift the predominant pole is improved,
although the other one is very slightly shifted towards the border of
stability.

Figures (5) to (8) indicate the effect of variations in L/B on em,

8 _, ©., and o respectively, in polar plot form. The magnitude

m p
ratio of the yaw rateem to the rudder angle 5r.Fig. (5), decreases

as L/B increases.This is also true for em’ Gp and a , Figs. (6),

(7) and (8) respectively.

Moving the L.C.G. forward decreases the magnitude ratio and phase
shift, which, divided by the rudder frequency @ gives the time
delay between the sinusiodal ship's response and the sinusoidal

rudder input.

The effect of variations in L/D on ém, em and ais illustrated in

Figs. (9) to (11) respectively, in the form of log-magnitude versus
log w, Fig. (9), and Bode diagrams, Figs (10) and (11). Increasing L/D
increases the magnitude ratio of all responses and increases the
negative phase shift. The shape of the magnitude ratio curves
demonstrate the property of the ship as being a low-pass frequency

filter.
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Other frequency response illustrations are shown in Fig. (12) for Om
in db-magnitude versus phase angle plot, and Fig. (13) for a in
inverse frequency plot. The same trend for the effect of L/D on em

and @ is also found in these graphs.

The effect of the rudder area ratio on ém, em andg is illustrated

in Figs. (14), (15), (16) and (17) respectively, in polar plot form,
and in Fig. (18) in inverse frequency plot. From these
diagrams, increasing the rudder area ratio increases the magnitude
ratio, while having no effect on the phase shift since it represents a

real multiplier to the frequency functions.

Fig. (19) 1illustrates the effect of changing the position of the
center of pressure on em and o xn Nichol's chart representation. In
accordance with the results displayed in Figs. (3) and (4) the effect

of the location of center of pressure, for the considered case, is

insensible.

Fig. (20) 1illustrates the effect of variations in L/B and L/D on the

frequencies w w
q c) d)

parameters, since their reciprocals rule the time constants of the

w andtws, that can be regarded as system

system, which control the speed of response. Increasing L/B increases
the frequencies, i.e. reduces the corresponding time constants.
Increasing L/D has the opposite effect.

5. Conclusion

A mathematical model for plane ship motions at steering is presented.

The directional stability was investigated as well as the frequency

response of the ship's coupled yaw and sway motions to sinusoidal
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rudder input at different frequencies. It was shown that the ship's
transfer functions behave as a low-pass frequency filter. Both the
mathematical model and the interpretation of the results justify the
used approximation of the trapezoidal wave by its first harmonic,
which, 1in a Fourier expansion, possesses‘the maximum amplitude at the

lowest frequency.

The effect of variations in ship's principal dimensions' ratios,
longitudinal position of the center of gravity, position of the center
of pressure and rudder area on the transfer function's poles and the

sinusoidal ship's response was investigated.
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